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Abstract

Power reduction is becoming more important as circuit
size increases. This paper presents a tool called PowerCutter
which employs accuracy-guaranteed word-length optimiza-
tion to reduce power consumption of circuits. We adapt
circuit word-lengths at run time to decrease power consump-
tion, with optimizations based on branch statistics. Our tool
uses a technique based on Automatic Differentiation to ana-
lyze library cores specified as black box functions, which do
not include implementation information. We use this tech-
nique to analyze benchmarks containing library functions
such as square root. Our approach shows that power savings
of up to 32% can be achieved on benchmarks which cannot
be analyzed by previous approaches, because library cores
with an unknown implementation are used.

1 Introduction

This paper focuses on minimizing the power consumption
of circuits by adapting the word-lengths of variables at run
time, as opposed to design time, based on the branching
characteristics of the design.

Using accuracy-guaranteed word-length optimiza-
tion [15], we are able to produce designs that minimize
power consumption while guaranteeing specified output
accuracy requirements. We guarantee the error characteris-
tics of the program including the average, best and worst
case errors under certain conditions. We then extend this
static approach to include run-time power optimization by
analyzing the branching behavior of programs.

We start from a C/C++ description of a design. This
design may contain single or double-precision arithmetic
and branches described using if statements, switch state-
ments and loops. Loops can be thought of as branches be-
cause the execution path will change depending on the loop
condition. We assign a set of errors to each branch of the pro-
gram based on statistical analysis of the program’s control-
flow, designed to minimize the overall error and area of a

circuit design; if a block of code is executed frequently, it is
likely to contribute more to the output error.

To reduce the accuracy of code blocks we decrease the
precision of arithmetic operators, which has the same effect
as reducing the number of bits used for the variables (Sec-
tion 5.3). To extend this method to work on dynamically
changing input data, we gather branch frequency statistics at
run time. This enables the circuit to evolve based on input
data, resulting in designs that consume less power than those
produced using previous accuracy-guaranteed approaches
which do not adapt to input data changes.

Several of our benchmarks use complex functions, such
as square root. In order to implement these functions effi-
ciently in hardware, specific implementations must be used
depending on the device. This makes analyzing their errors
difficult, because the implementation may be unknown. To
handle this we extend a dynamic word-length optimization
technique called Automatic Differentiation to calculate the
precision of these operators (Section 5.2).

To assist design exploration, we instrument the code to
automatically determine the input ranges. This extension
to our previous work means that the process only requires
a single metric from the user specifying the accuracy, for
example, the output precision. Our approach involves in-
strumenting code and gathering information about internal
ranges, which can be used to determine the representation
that would best suit the variables (Section 5.1).

To summarize, the novel elements of our approach in-
clude:

1. Dynamic range analysis and control-flow analysis to
improve static word-length optimization (Section 4).

2. The application of clock gating to word-length analysis
allowing word-lengths to change at run time to produce
low power designs (Section 5.4) based on branch statis-
tics and loop iteration bounds, which are not known at
compile time (Section 5.3).

3. The use of Automatic Differentiation to analyze the
word-lengths of black-box functions (Section 5.2).



4. Demonstration of our approach on 5 benchmarks
achieving power improvements of up to 32%: ray-
tracing, molecular dynamics simulation, simulation of
guitar string motion, Discrete Cosine Transformation
(DCT), and B–Splines (Section 6).

2 Background and Related Work

2.1 Word-Length Analysis

Two common methods of storing numeric values on FP-
GAs are using the fixed-point and floating-point formats.
Floating-point units can be used for a wider range of ap-
plications than fixed-point units because they can be used
when a large dynamic range is required as well as high ac-
curacy. The disadvantage is that they are larger and slower
than fixed-point units. For this reason fixed-point units are
preferred in FPGA architectures. Since software programs
commonly use floating-point, we must convert between the
two formats.

In order to do this we must calculate a range and precision
for each variable, which can be done statically or dynami-
cally. Static techniques tend to be more conservative since
they do not have access to specific input data sets and may
therefore overestimate the range and precision. In contrast
dynamic analysis yields more accurate results for the given
test data, but is not guaranteed to be accurate for any input
data set. The static word-length analysis technique we use
in this paper is designed to guarantee the accuracy on the
outputs: given an output error requirement, the technique
can be used to calculate range and precision values to meet
this. An example of how to calculate the error of the function
y = (a× b) + c, can be seen below:

multiplyerror = (aerror × berror) +
(aerror × bmax range) +
(berror × amax range) +
(2−precision of multiply)

yerror = multiplyerror + cerror +
2−precision of y

where the errors on the inputs are defined as
2−precision of input. For more information about the
algorithm, see [15].

2.2 Power

Power consumption in FPGAs can be characterized as
static or dynamic. In this paper we show reductions for
dynamic power. Dynamic power consumption is caused by
signal transitions (signal toggling) and can be modelled as:

P =
∑

i∈resources

CiV
2
i fi

where Ci, Vi, and fi are the capacitance, voltage swing, and
operating frequency of resource i, respectively [19]. The
speed of the circuit and the input data used are important
when determining power consumption, because they both
affect the signal transition rate.

2.3 Function Analysis

We use Automatic Differentiation to work out the word-
lengths of black-box functions. The following equation
describes how input and output sensitivities are related:

y = f(x)

∆y = ∆x× dy

dx

The output sensitivity is given: this is related to the pre-
cision of the output. Using a data-flow graph the errors are
propagated from the outputs to the inputs. Once the sensitiv-
ities are known for each variable, precisions are assigned to
them. For more information see [2].

2.4 Related Work

In control-flow analysis, Styles and Luk [17] use informa-
tion about branch frequencies to reduce hardware resources
for implementing branches that are infrequently taken. Since
program executions often change their behavior based on
input data, the circuit needs to evolve at run time to keep
error to a minimum.

Bondalapati and Prasanna [5] reconfigure the circuit at
run time and show that it can be used to reduce execution
time by up to 37%.

As mentioned in the introduction, we start from a high-
level description. Some researchers [4, 11] use high-level
models to optimize design area and power consumption. In
order to model the components accurately, low-level char-
acteristics have to be captured. Since we may not know
in advance which chip the design will be synthesized for,
we cannot use these approaches directly. Clarke et al. [7]
present power models for addition and multiplication which
do not depend on their implementation, but instead on the
input data supplied. If the characteristics of the input signal
are not known in advance, this method cannot be used.

Zhang et al. [20] analyze the effect of clock gating on
power efficiency showing that FPGAs, although not as effi-
cient as ASICs, can achieve significant power reductions.

Word-length optimization has been used to reduce power
consumption on FPGAs and ASICs [9, 14]. Constan-
tinides [8] shows that word-length optimization can reduce



power consumption by looking at the sensitivities of vari-
ables to small errors. This approach reduces power consump-
tion as a side-effect of reducing area.

Abdul Gaffar et al. [1] present an approach to reduce
dynamic power by over 10% by using analytical models of
power consumption. They show that area-optimized designs
will not always be the most power-optimal. Each design
is optimized independently and no consideration is given
to using a single functional unit for several different word-
lengths.

Lee et al. [12] have developed a system called
MiniBit, which employs static analysis to produce accuracy-
guaranteed results. This system does not use information
about control-flow to improve the errors in different parts of
the program.

In contrast, Abdul Gaffar et al. [2] use a dynamic ap-
proach to work out the precision of variables. This uses
information gathered at run time, but cannot be used to work
out the precision of functions that are more complicated than
arithmetic operators such as addition and multiplication. Our
approach can determine precision of any unknown function.
Both approaches will reduce power consumption of a design
as a side-effect of reducing area.

3 Design-Flow

Our design-flow, shown in Figure 1, has three inputs. The
first is a C/C++ design annotated with the error constraints on
the output variables. The second is a set of error constraints
on variables in the program. While any variable may have a
constraint associated with it, all output variables must have
a constraint specifying their precision. This enables the
tool to determine when to stop reducing the precision of
a variable. The third input is either input data or a set of
input variable ranges for the program. This information is
required to analyze the precision of variables in the system
(Section 4.1). If an input data set is specified, the input
ranges can be collected automatically using our tool. Hence
in this case the developer only needs to supply the input data
and output precisions.

The PowerCutter tool produces two outputs. The first
is a C/C++ design annotated with the range and precision
word-lengths of all of the variables. This information is used
to produce fixed-point designs. We use fixed-point because
the range of the variables in our design is small in general.
In this case fixed-point units will be more power-efficient
and smaller than floating-point units.

The second output is a database of statistics which can
be used in conjunction with the annotated C/C++ design to
generate hardware with word-lengths adapting to run-time
conditions. This run-time adaptable hardware can be imple-
mented by run-time reconfiguration [5], or by activating only
the optimal number of bits required for each variable using a
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Figure 1. An overview of the PowerCutter
design-flow.

clock gating technique (Sections 5.3 and 5.4). The former
requires a smaller area, but can take longer to reconfigure;
the latter does not achieve an area reduction but supports fast
word-length adaptation.

The first stage of the design-flow is to parse the source
code using the ROSE [16] front-end. The static analysis
is the core analysis used by the tool. It starts with range
analysis (Section 4.1) to determine the range of every vari-
able being analyzed. These results are passed to precision
analysis (Section 4.1) which determines the number of frac-
tional bits required for each variable. Control-flow analysis
(Section 4.2) is applied which weights the results based on
the branch characteristics.

Offline dynamic analysis provides information to the
static analysis. The first stage involves instrumenting the
code with calls to the PowerCutter library in order to supply



information about the code when it is profiled. The code is
also instrumented with truncate calls to look at the outputs
at different precisions so that the developer does not need
to supply output precisions to our tool, and only needs to
supply input data to the program being analyzed.

Input range analysis (Section 5.1) automates the process
of collecting input range information, and can also detect
patterns in these ranges. The next stage is black-box function
analysis (Section 5.2) which is designed to determine the
precision of functions that do not have a specified implemen-
tation such as a square root IP core. Branch analysis (Sec-
tion 5.3) gathers statistics about the frequency of branches
and patterns in their execution. This information can be used
to generate a hardware description of a controller to pre-
dict the direction of branches and gather additional branch
statistics while the circuit is running. This is combined with
our arithmetic modules which include logic to reduce the
precision at run time, to produce the final hardware design.

Design exploration allows the output error requirements
or input ranges to be changed. It is also possible to constrain
intermediate ranges and precisions, for example to set an
upper bound on the number of bits used for a variable.

4 Static Analysis

4.1 Range and Precision Analysis

Every variable involved in arithmetic operations has a
range and a precision associated with it. Our approach to
range and precision analysis is accuracy-guaranteed, which
means that any operations performed by the static analysis
are guaranteed to produce a specified accuracy irrespective
of the input data. Since these results will be conservative,
dynamic analysis can be used so that the results are guaran-
teed for a specific input data set. Our range analysis uses a
combined Interval/Affine analysis. Starting from the input
ranges, operations are performed on ranges as opposed to
variables in order to produce ranges for the intermediate and
output variables. Affine arithmetic is used because it main-
tains correlations between the ranges, resulting in smaller
output ranges if a variable is used in several places. Sec-
tion 2.1 describes how errors are used instead of numeric
values to calculate the worst-case error on the output, if two
input errors are specified to a function, such as multiplication.
Range analysis is performed first because variable ranges
are required in precision analysis. This range and precision
analysis enables us to perform a floating-point to fixed-point
conversion if required.

We target high-cost resources first, for example multipli-
ers and dividers and of these, reduce the resources with the
lowest error. For more information see [15].

4.2 Control-Flow Analysis

When analyzing the size of variables, it is important to
assign a cost to a reduction. A multiplication operation
will typically have a higher cost than an addition operation
because it takes up more area and is slower. We combine
traditional approaches to word-length analysis [12, 15] with
control-flow analysis. If one block of code is executed more
often than another block, its cost should be higher because it
will take up more execution time and is likely to contribute
more to the overall error.

We weight the cost analysis based on the proportion of
time that a block of code takes to execute. This on its own
will only give a small performance improvement, but we
combine it with dynamic analyses to reduce the power con-
sumption of the design (Section 5.3). Since we reduce the
precision of blocks of code that contribute more heavily to
the execution time and we reduce the precision at run time
(when the circuit is running as opposed to our offline analy-
sis), there will be a greater power saving than if we reduce
the precision of blocks that only contribute a small propor-
tion of the execution time. This optimization therefore has
a small effect on its own but a large effect when combined
with dynamic analysis discussed in Section 5.3.

We also have the option of weighting the error function.
Figure 2 shows a situation in which it may be more cost
effective to weight the error function. If the if-condition is
only executed 50% of the time, the error on accumulate a
will be twice what it should be.

i f ( c o n d i t i o n ) {
a c c u m u l a t e a ∗= a ;

} e l s e {
a c c u m u l a t e b ∗= b ;

}

Figure 2. Weighting the error function to han-
dle control-flow.

5 Dynamic Analysis

Static analysis on its own produces conservative results.
To combat this we use dynamic analysis which extends our
previous work, in which only loops are analyzed [15]. We
add three new optimizations, performed in the following
order:

1. Dynamic range optimization of variables (Section 5.1).

2. Analysis of black-box functions to calculate precision
without knowing their implementation (Section 5.2).



3. Use of control-flow information gathered at run time to
minimize power consumption (Section 5.3).

5.1 Input Range Analysis

We start by instrumenting every assignment statement
in the code with a call to the PowerCutter library, unless
the expression corresponds to an address. When the code
is executed, the library keeps track of all of the variables
and their corresponding range. The impact of this is that
our design-flow only requires a quality metric for the out-
put, which may simply be an output precision. If all of the
ranges have not been gathered, the ranges are filled-in using
a combined Interval/Affine range analysis [15].

In some cases, it may not be cost effective to use a fixed-
point number system. To handle this, our library also keeps
track of the range at different points. When a range is input
into the library, the log is taken. This means that when a
histogram of the data is plotted, the number of points around
zero is greater, since these are the most important values. The
values around zero enable us to determine whether floating-
point will be more efficient or whether the values can be
shifted. Very small values may not be able to be implemented
in fixed-point efficiently because there are a large number of
bits that will always be zero. To avoid this, either floating-
point or a shift to remove the zeros can be used. Our system
can also be used to detect patterns in input ranges which may
be used to save power if the range can be predicted.

5.2 Black-Box Function Analysis

Our previous paper shows how information gathered at
run time can be used to make the results less conservative.
We expand this technique to calculate the precisions of func-
tions that are unknown. In our designs we use square root
and divider modules which cannot have their error calculated,
because we don’t know how the function is implemented
in hardware. We use a technique called Automatic Differ-
entiation which has been used to analyze word-lengths [2].
We extend this method to differentiate any function, beyond
standard operators, for example add and multiply.

To demonstrate this approach, consider the expression
y = a× b.

dy

da
=

(a× b)− (aold × b)
a− aold

dy

db
=

(a× b)− (a× bold)
b− bold

where aold and bold are the previous values of a and b re-
spectively.

Using these derivatives, we can calculate the sensitivity
of the inputs, given the output sensitivities:

aerror =
yerror

2× dy
da

berror =
yerror

2× dy
db

The derivative is multiplied by 2 because we divide the
error equally between a and b in this case. Given the errors
on each input, we can obtain the word-lengths. To perform
the calculations illustrated above, we instrument the code
being analyzed with calls to the PowerCutter library.

An alternative to this approach is to use function approx-
imation [13]. This involves designing functional units that
can be analyzed statically to calculate accuracy-guaranteed
designs. The disadvantage with this is that the functional
units may not be as efficient as optimized cores. We show
that this technique can be applied in Section 6.3 to analyze a
square root.

5.3 Branch Analysis

To optimize branches we first look at the control-flow.
We break the program up into a set of basic blocks; each
block having one entry point and one exit point. If a block
of code is executed a large number of times, we assume that
it will have a greater influence on the error of the final result.
If a block is not called many times it is likely that the error
contributed by that block will be small, so we may be able
to reduce the precision of the values used in this block.

Each branch is assigned an error metric based on its fre-
quency; the higher the frequency, the lower the error metric.
One further approach is based on branch prediction. If a
branch is very unlikely to be taken, the precisions of vari-
ables along that branch could be minimized to reduce the
area of the circuit. This can be extended to handle loops as
well. In our last paper [15] we discuss loop analysis as a
method to enhance the static word-length analysis. It works
by reducing the precision required for loops by estimating
the number of loop iterations. This is an offline dynamic
analysis that uses ROSE [16] to instrument the source code.
If the number of iterations is not known at compile time, we
reduce the word-lengths at run time to save power for the
design. This also has applications to custom processors in
which the word-lengths may need to change based on the
program running on them. Our tools can be employed to
dynamically change the word-lengths at run time based on
user-supplied stimuli.

Convergence is another application that can benefit from
reduced precision arithmetic. The more iterations of the loop
that execute, the more precise the calculation needs to be.
The ability to reduce the precision of the arithmetic operators
can therefore be used to reduce the power of such systems.
One example of this is the Newton–Raphson method which
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Figure 3. Time before full run-time reconfigu-
ration becomes more efficient than reconfig-
uration strategies in which the entire design
resides on the chip.

calculates an approximation for the roots of functions. This
is quadratic which means that the number of bits doubles at
every iteration.

5.4 Reconfiguration

In order to save power and to allow a design to adapt to
different input conditions, we explore 3 methods of recon-
figuring the design. This means that the design can adapt to
changing conditions, enabling it to have a high or low accu-
racy depending on the output accuracy requirement. When
a lower accuracy is required we can reconfigure the design
to save power. Using a lower accuracy can also allow multi-
ple inputs and results to be combined to reduce bandwidth,
accelerating the application.

5.4.1 Clock Gating

Components for clock gating, such as BUFGCE on Xilinx
devices, are few in number on Virtex FPGAs (16 on a Xilinx
XC2VP30 FPGA), so we use a different method to gate the
clock. BUFGCE is a global clock buffer with a single input
and clock enable. To enable more local clock gating, which
is required because we are only gating part of an arithmetic
operator, we can use the clock enable on the flip-flops. We
find a 45% drop in power consumption when lowering the
word-length from 32 bits to 16 bits with an 11% increase in
the number of slices. Because we only use the clock enables
on flip-flops to save power, the clock is still toggling and
therefore consumes more power than an ASIC design in
which the clock can be completely gated.
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Figure 4. Power saving for a 32-bit multiplier
by reducing the precision.

Another option is to use a more global clock gating tech-
nique whereby we select entire arithmetic operators, for
example multipliers with different precisions, instead of gat-
ing individual bits; we do not do this here because it requires
a large area. An even more global technique is to use run-
time reconfiguration. This means that the whole FPGA, or
just part of it, is reconfigured at run time. With a smaller
design on the chip, the power consumed will be lower. The
disadvantage is that there are speed and power overheads
associated with the reconfiguration process.

5.4.2 Run-Time Reconfiguration

Given that energy = power × time, we can look at the
amount of time required before run-time reconfiguration will
reduce the overall energy of the system.

Figure 3 shows how long it takes before the overhead
of reconfiguring the design by keeping the entire design
on the chip, becomes more costly than reconfiguring the
entire circuit. When applying our model, we use 14ms [10]
for the average reconfiguration time and 1500mW [3] for
the average reconfiguration power; the energy required to
reconfigure the chip is therefore 21mJ. The overheads of
using clock gating are taken from the designs in Section 6. If
the reconfiguration interval required is of the same order of
magnitude as the clock cycle time, a clock gating approach
may be more suitable.



5.4.3 Changing Signal Transition Rates

The reconfiguration method found to be the most efficient
involves reducing the signal transitions by feeding zeros into
the unwanted bits. Figure 4 shows the power consumption
of a 32-bit multiplier running at 200MHz with different
precisions, changed by setting the unwanted bits to zero.
This method has a 2% area overhead because the inputs must
be multiplexed.

5.5 Annotations

To use this system, we add annotations to the code being
executed on a custom processor or transformed to run on a
different architecture for example an FPGA.

#pragma o u t p u t p r e c i s i o n a c c a : 2 4
f l o a t a c c a = 1 ;

f o r ( i n t i = 0 ; i < 1 0 ; i ++) {
i f ( c o n d i t i o n ) {

#pragma e x e c u t e d 0 . 5
a c c a ∗= a ;

}
}

Figure 5. Annotation example.

The pragma annotations above tell our tool that the
output precision should be 24-bits (guaranteed) and that the
if-condition is executed 50% of the time. Alternatively this
can be calculated automatically by using the offline dynamic
analysis described in Section 5.1.

6 Case Studies

6.1 Experimental Setup

To perform the experiments we use the Xilinx XUP board
with a Virtex II Pro XC2VP30–7 FPGA. All designs were
synthesized using Handel–C 4.1 and Xilinx ISE 9.2. We
measure the power consumption by attaching an ammeter to
the 1.5V VCCINT jumpers, which only supply power to the
FPGA.

6.2 B–Splines and 8×8 DCT

Figure 6 shows two power consumption readings for the
B–Splines benchmark. The 32-bit prec line shows the power
consumption of the design at varying output precision. The
dashed line is the power consumption of the design at vary-
ing precision assuming that the entire design is on the chip.
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Figure 6. Power consumption of the B-
Splines benchmark.

Since the entire design is on the chip for reduced prec as op-
posed to the minimum logic required (variable prec), there
will be a small amount of power loss so there is a gap be-
tween the two lines. Power loss indicates this and should
therefore be minimized. Any Block RAM used in the de-
signs will not be gated because all values must be stored
at their maximum precision, and therefore contribute to a
smaller power improvement. The ideal case occurs when all
of the logic is used in fixed-point calculations and there is
no power loss. This would mean that the two lines on the
graph would lie on top of each other. Since this will never
occur in practice, there is always a small gap.

Because we don’t want to include the overhead of I/O
in the designs, we simulate the inputs using 8-bit counters
to create a uniformly toggling input. Although the toggle
rates may be reduced in practice, this will not significantly
alter the proportional reduction we get from reducing the
word-length.

For the B–Splines design we show power savings of 2.5%
per bit of precision (Power improvement in Figure 6). Be-
cause the signal transition rates have been reduced by set-
ting part of the input to a constant value, both precisions
can be used in the design. In each of these designs, the
output precision is guaranteed because we use accuracy-
guaranteed word-length optimization [15]. We also show
power improvements of 2% per bit can be achieved using
our approach on the DCT design, compared to previous
accuracy-guaranteed approaches [12]. This is lower than the
B–Splines design due to some integer arithmetic operations
whose precision cannot be reduced.

6.3 Ray Tracing

The bottleneck in most ray-tracers is the ray-sphere in-
tersection; for every ray, it must be determined whether the
ray will intersect with an object. This kernel is executed
70 million times for each image, of which approximately
2 million calls are intersections. We traverse the rays in a



 30

 40

 50

 60

 70

 80

 90

 100

 15  20  25  30

Ray Tracing

Precision [bits]

Im
ag

e A
cc

ura
cy

 [%
]

High-resolution 
image

Low-resolution 
image

Figure 7. A comparison of image quality with
output precision.

breadth-first fashion because this makes the ray intersections
more predictable.

The errors in the resulting image, caused by the ray tracer,
are most noticeable on the boundaries, giving rise to jagged
edges. We can therefore make the assumption that if two
consecutive rays intersect, the ray is not on a boundary, and
further reduction can occur.

If the hardware design were implemented specifically to
cater for a simpler image, the precision could be greatly
reduced to conserve power. Since any image can be input
to the ray tracer we reduce the word-lengths at run time by
gating the clock to reduce power consumption. Based on our
static analysis, we choose a set of word-lengths meeting the
different error requirements.

Figure 8(a) shows the area and speed of the ray tracer
at different output precisions. In general area increases as
output precision increases. As the chip starts to fill up, how-
ever, the area will stop increasing because the mapper tries to
pack the design onto the chip. Figure 8(b) shows the power
consumption at different precisions as well as power con-
sumption with logic to reduce the signal transitions included.
As explained above, this differs slightly because the logic to
implement the design at full precision must be on the chip
even when a lower precision is being used. Since this design
only has a small amount of power loss, the lines are close
together.

This design contains a square root operation which can-
not have its precision calculated using standard approaches
(Section 5.2). We show power improvements of 2.3% per
bit can be achieved using our approach on this application,
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Figure 8. Area, speed and power consump-
tion of the ray tracer at different output preci-
sions.

compared to previous accuracy-guaranteed approaches [12].
This amounts to a maximum of a 32% power saving when
the precision of the ray tracer is reduced from 32 bits to 20
bits, the precision at which errors start to become noticeable.

6.4 Molecular Dynamics Simulation

Figure 9 shows an outline of the particle interaction ker-
nel similar to that used in the MolDyn benchmark [6], a
molecular dynamics simulation. This example could eas-
ily be applied to collision detection since the principle is
the same; it contains several conditional statements which
may not be taken very often, making it a good candidate for
run-time branch prediction to reduce error.

Figure 10 shows how area, speed and power consumption
are affected by output precision. We achieve power savings
of up to 2.8% per bit. The fluctuation in the curve is due
to the use of an area model to calculate the word-lengths as
opposed to a power model which may increase area.

This design highlights an important aspect of our preci-
sion analysis algorithm which uses heuristics for word-length
analysis. These designs take between 25 and 40 seconds to
analyze due to the large number of variables compared to
previous accuracy-guaranteed approaches which take over
100 seconds to analyze simpler benchmarks such as the DCT.



f o r ( i i = 0 ; i i < n i n t e r ; i i ++) {
/ / D i s t a n c e be tween p a r t i c l e s
i = i n t r [ i i ] . f i r s t ;
dx = x ( i ) − x ( j ) ;

. . .

/ / Check f o r c o l l i s i o n s (6 i f b r a n c h e s )
i f ( dx < −s i d e ) . . .

. . .

d i s t s q r = ( ( dx ∗ dx ) + . . . ;

/ / Check f o r an i n t e r a c t i o n
i f ( d i s t s q r < i n t e r a c t d i s t s q r ) {

/ / C a l c u l a t e f o r c e s
r d i s t s q r = 1 . 0 / d i s t s q r ;

. . .
r d i s t s q r 7 = r d i s t s q r 6 ∗ r d i s t s q r ;
f o r c e = r d i s t s q r 7 − ( 0 . 5 ∗ r d i s t s q r 4 ) ;

f o r c e x = dx ∗ f o r c e ;
fx ( i ) += f o r c e x ;
fx ( j ) −= f o r c e x ;

. . .
}

}

Figure 9. Particle interaction.

6.5 Guitar String Simulation

This kernel simulates a real vibrating string by using the
finite difference method.

Figure 11 shows how power consumption changes as a
result of changing output precision. The area increases since
more logic is required to meet a higher error requirement,
which also causes the power consumption to increase. The
variable prec line in Figure 11 shows how power consump-
tion varies as precision increases. This is a small design,
so a large proportion of logic is dedicated to non-arithmetic
operations, therefore the effect of dynamic optimization is
not as noticeable, although it does yield power savings if a
lower output precision is adopted.

We show power improvements of 0.5% per bit can be
achieved using our approach. Although this is a lot lower
than the previous designs, in part due to the size of the
design relative to the overheads, this application converges
to a solution, which means that at the start of the computation
the word-length can be reduced by a large amount; as the
computation progresses, the precision will increase.

7 Conclusion and Future Work

This paper describes an approach to enable word-lengths
to dynamically change either by using clock gating or by
changing part of the input to a constant value, based on
branch probability analysis. The approach achieves up to
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Figure 10. Power consumption of the molec-
ular dynamics simulation.
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Figure 11. Power consumption of the guitar
string simulation.

32% power reduction for a ray tracing design before a notice-
able drop in accuracy can be seen. We gather information
about each branch in a program in order to determine the
word-lengths to assign to each basic block. Our system
can analyze library functions with no implementation spec-
ified, enabling us to specify a precision for cores used in
our design, with an unknown implementation. This means
that we can support library-based designs which previous
approaches cannot.

We use input range analysis to detect patterns in the
way numbers are used. These patterns are regular over
long periods of time; in the ray tracer this may amount to a



frame or several frames. Current and future work includes
analyzing these patterns further, with the goal of reducing
power consumption. We will also explore the trade-offs
of different run-time word-length analysis methods, and
integrate the proposed approach with other reconfigurable
optimization techniques such as program phase analysis [18].
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