
Instrumented Multi-Stage Word-Length Optimization

W.G. Osborne, J.G.F. Coutinho, R.C.C. Cheung, W. Luk, O. Mencer
Imperial College

London, United Kingdom
email: {wgo, jgfc, rcheung, wl, o.mencer}@imperial.ac.uk

Abstract

In this paper we present a tool, LengthFinder, for opti-
mizing word-lengths of hardware designs with fixed-point
arithmetic based on analytical error models that guarantee
accuracy. LengthFinder adopts a multi-stage approach, with
four novel features. First, the code analysis stage selects
loops to instrument, such that information about the number
of iterations can be extracted to generate more accurate
results. Second, aggressive heuristics are used to produce
non-uniform word-lengths rapidly while meeting require-
ments from the guaranteed error functions. Third, a method
capable of reducing the search space has been developed
for data-partitioning with a variable word-length reduction.
Fourth, a genetic algorithm with selective-crossover and
high mutation probability is applied to obtain near-optimal
results. The benefits of LengthFinder are illustrated with
various case studies. We show that LengthFinder can run
over 200 times faster than previous techniques [6], while
producing more accurate results, relative to values obtained
from integer linear programming.

1 Introduction

When creating a design in hardware, the word-length of
variables, arrays and constants must be chosen carefully to
reduce the area and increase the speed. The problem is that
it is often better to combine different word-lengths. Given
that most programs use 32-bit (or more) values with a range
and a precision, the problem of selecting the best represen-
tation for each number becomes intractable. The problem
is NP–Hard [3] so the search space cannot be completely
covered. Heuristics have to be used to guide the search to a
near-optimal result without getting trapped in local minima.

There are two methods of word-length analysis. The first
is a simulation-based approach [1, 4, 13] which involves
optimizing the lengths for a specific training set. This has
the obvious difficulty of choosing the training set, and the
simulation is not guaranteed to produce results within the

error requirement for every input. The second approach
calculates the precisions based on error models [6]. The
disadvantage of this approach is that it can over-estimate in
places.

In this paper we present a novel tool, LengthFinder, which
enables design exploration to take place while maintaining
the accuracy within a few percent of an optimal solution.
We adopt an accuracy guaranteed approach [6] and try to
reduce the over-estimates (Section 3.2). The accuracy of the
analysis is then further increased by adding a phase after
design exploration to fine-tune results.

The main contributions of this paper are:

1. The code analysis stage, which selects loops to instru-
ment such that information about the number of itera-
tions can be extracted to generate more accurate results
(Section 3.2).

2. Aggressive heuristics, which estimate non-uniform
word-lengths rapidly while meeting requirements from
the guaranteed error functions (Section 4.1).

3. A method for data-partitioning with variable amount of
word-length reduction, for reducing the search space
(Section 4.2).

4. A genetic algorithm with selective-crossover and high
mutation probability, for obtaining near-optimal results
(Section 4.3).

The benefits of LengthFinder are illustrated with case
studies, including DCT, FFT, RGB to YCbCr conversion,
polynomial approximation (degree-7), dot-product and B-
Splines. We show that LengthFinder can run over 200 times
faster than previous techniques, while producing more ac-
curate results relative to values obtained from integer linear
programming.

2 Background and Related Work

2.1 Background

The word-length optimization problem can be split into
two parts: range and precision analysis. They can be per-
formed statically or dynamically. Static approaches [6, 13]
tend to be faster, but can over-estimate the result while dy-
namic analysis [1, 4] does not usually guarantee the accuracy
of results because it uses simulated inputs.

2.1.1 Range Analysis

Range analysis can be accomplished by performing oper-
ations on input ranges until the outputs are reached. The
range analysis stage in our system involves both interval and
affine arithmetic, because each of these methods can over-
estimate the range in different situations. For instance, in
interval arithmetic x̄− x̄ does not produce zero (where x̄ rep-
resents the interval of x), whereas it does in affine arithmetic.
Affine arithmetic has problems as well. When calculating
the square root of a number, the range can be wider than
interval arithmetic due to a hidden non-linear dependency
on one of the noise variables [14].

Interval arithmetic [9] has the simpler model of the two
approaches and has the following rules:

[a, b] + [c, d] = [a + c, b + d]
[a, b]− [c, d] = [a− d, b− c]
[a, b]× [c, d] = [min(ac, ad, bc, bd),

max(ac, ad, bc, bd)]

As mentioned earlier, the correct answer for x̄ − x̄ should
be 0, but the equations give [xmin − xmax, xmax − xmin].

To solve the problems of interval arithmetic, affine arith-
metic [14] is introduced which takes into account correla-
tions between results. Each signal has noise values that can
appear in multiple other signals. A signal is represented as
follows:

x̂ = x0 + x1ε1 + x2ε2 + ... + xnεn, where εi = [−1, 1].

To convert ranges to signals in this form, the following equa-
tions are used:

x0 =
xmax + xmin

2
, x1 =

xmax − xmin

2
.

Once the intervals [xmin, xmax] are in the form of x̂, they
can be added, multiplied and converted back to intervals
when required. To convert the equations back into intervals,

set εi to 1 or -1 in order to give the maximum and minimum
values. For example in the equation: x̂ = −4+9ε1−3ε2, the
maximum and minimum values are 8 and -16 respectively. A
problem arises when multiplying an expression of the form:

Q =

(
n∑

i=1

xiεi

)(
n∑

i=1

yiεi

)
.

The conservative approximation to this is:

Q ≈ uvεn+1, where u =
∑n

i=1 |xi|, v =
∑n

i=1 |yi|

(see [14] for a more detailed overview).

2.1.2 Precision Analysis

Precision analysis corresponds to reducing the number of
bits used to store the fractional part of the number while
maintaining a specified accuracy. This works by assuming
that the error caused by each input is 2−FB(x)−1, where
FB(x) is the number of fractional bits for the fixed-point
number x. Instead of performing arithmetic on the inputs, it
is performed on the errors. Examples are shown below.

y = a× b

yerror = 2−FB(y)−1 + (aerror × bmax range) +
(berror × amax range) + (aerror × berror)

y = a + b

yerror = 2−FB(y)−1 + aerror + berror

2.2 Related Work

Kum et al. [4] follow a simulation-based approach to
optimize the precisions and ranges of variables, grouping
variables together to speedup the algorithm. The variable
grouping limits the scope for optimization, since the word-
length of individual variables cannot be changed.

Abdul Gaffer et al. [1] use an approach called automatic
differentiation which involves looking at the signals at differ-
ent times and determining the width. Although this approach
tends to be less time-consuming, neither approach is guaran-
teed to produce correct results for a given input.

Roy and Banerjee [13] adopt a simple algorithm based
on reducing word-length’s but do not use affine arithmetic
to optimize the ranges. Since this is a simulation approach it
does not ensure accuracy.

Lee et al. have developed a system called MiniBit [6],
which employs static analysis to produce accuracy-
guaranteed results. The problem is that it only focuses on
fixed-point representations, and is time-consuming even on
small designs.

Several approaches have been designed to optimize ge-
netic algorithms [2, 11, 12]. In [11] the authors systemati-
cally cross-over solutions by trying all possible combinations
to produce better populations; the problem is that this can
be slow. Another approach is to reduce the search space
by utilizing the sequence of points that have already been
analyzed to guide the search [12]. Since our approach does
not take long to evaluate a set of results, this method may
actually slow down the system. With large data sets, de-
termining whether a point has already been calculated may
be time-consuming. We use smaller datasets and partition
the problem in preference. In [2] crossover operators are
used to preserve common components. This maybe useful
if common sections could be found, however in the general
case, each number has to be treated individually.

Our approach focuses on speeding up word-length opti-
mization while also reducing the area of the final design. We
completely automate the process, producing results more
quickly than other methods [6, 13]. We make use of con-
straints given by the developer to refine the word-length if
needed. In many application domains it is essential that the
results are always correct. We use partitioned iterative re-
duction to calculate near-optimal results quickly and a novel
selective-crossover approach to guide our search.

3 Methodology

3.1 Design-Flow

An overview of the system is shown in Figure 1. The
design-flow starts with a C/C++ description parsed by
ROSE [5], a compilation framework currently supporting
C/C++ which provides a mechanism for constructing source-
to-source translators, and enables research work in many
areas, such as: performance optimization, program trans-
formation, instrumentation and program analysis. The code
is annotated with user constraints (input and output errors
and ranges). The system analyzes the Abstract Syntax Tree
(AST) and stores all relevant information in cost and error
tables. These are designed to be small enough to fit in the
cache to increase performance.

Once the AST has been analyzed, we instrument the code
to tackle loops in the program to improve the accuracy and
speed of range and precision analysis (Section 3.2).

After the code has been instrumented, we proceed to
range analysis which combines interval and affine arithmetic
approaches. In particular our system stores the equations au-
tomatically derived from both affine and interval arithmetic
and uses the result corresponding to the narrowest range. It
is important to note that the range of a variable is stored with
the specific instance of the variable because the range of a
variable can be different at each point in the program.

Annotated C/C++

Design

Annotated C++ Design (with

optimized word lengths)
Source generation

Code Analysis and

Instrumentation
(Section 3.2)

Range Analysis
(Section 3.1)

Coarse-grain

Analysis

Precision

Analysis

Heuristic

Partitioning

Guaranteed-Error-

Function Generation

Low-effort Pass
(Section 4.1)

High-effort Pass
(Section 4.3)

Search Space Reduction
(Section 4.2)

Design

Exploration

Cost-table

Generation

Annotated AST

Annotated AST

Input Constraints

Figure 1. An outline of the methodology
used.

After range analysis, we perform precision analysis (Sec-
tion 4). To reduce the search space (Section 4.2) we use three
methods: (a) efficient cost tables to store data, (b) a coarse-
grain analysis and (c) heuristic-partitioning to divide up the
problem, which speed up the precision analysis process and
enable design exploration. This way, when the precision
analysis completes, users can repeat range analysis or preci-
sion analysis using different constraints (variable errors and
ranges) to find the best tradeoff in resource area, execution
time and accuracy.

Our design-flow also includes a high-effort pass (Section
4.3) which is optionally executed after the low-effort pass.
It involves a genetic algorithm to provide a more accurate
result at the expense of time to compute the result. For this
purpose, we use the high-effort pass after performing design
exploration.

Finally, LengthFinder generates a C/C++ program an-
notated with the optimized word-lengths computed in the
previous stages. This way, a hardware compiler can use this
information to synthesize the design in hardware.

3.2 Code Analysis and Instrumentation

LengthFinder works with C/C++ programs, including
those with conditionals and loops. It targets numeric primi-
tive types, and treats arrays as variables. The reason is that
each element of an array is the same size, and can therefore
be flattened. Variables that are subject to optimization (size
reduction) are called target variables, and all other variables
are ignored in the calculation.

An important aspect of our approach is that we instrument
the code in order to improve the accuracy and speed of a de-
sign which contains loops. Accuracy guaranteed approaches
employ static analysis and thus cannot always determine
the number of iterations. Existing approaches [1, 6] cover
loops by simply unrolling them, however this technique is
not practical for programs with large iteration spaces.

To overcome these problems we work out the number of
loop iterations automatically when it affects range and preci-
sion analysis; in all other cases loops are ignored. Ignoring a
loop allows the algorithm to work faster. On the other hand,
working out the number of iterations of a loop will cause the
algorithm to be less conservative, since it does not have to
assume that variables have the maximum range; therefore
there is more scope to reduce hardware design area. Decreas-
ing the range will mean that the precision may be able to
be reduced (see Section 2.1.2), hence, when the number of
iterations for a loop cannot be determined at compile-time,
we use runtime information.

Consider Listing 1, which shows a loop in which the
number of iterations cannot be calculated because the loop
depends on an input variable (input_x). If this input vari-
able has width 16, this loop could execute up to 216 times
and the accumulator acc must be conservatively set to its
user-defined size (16 bits) in this case.

unsigned s h o r t acc = 0 ;

f o r (i n t i = 0 ; i < i n p u t x ; i ++)
{

acc = acc + 1 ;
}

Listing 1. A loop with an accumulator.

To overcome this problem, we automatically instrument
the code in Listing 1 based on the steps outlined above to
determine the number of loop iterations (Listing 2). For this
purpose, we use the analyze_loop function to keep track
of the number of iterations in a loop and the analyze_end
function to signal that the loop has finished executing.

Listing 3 shows an example of a loop that can be ignored
since it does not affect error and range calculations. The
reason for this is that arrays are treated as variables since

e x t er n void a n a l y z e l o o p (char ∗) ;
e x t er n void a n a l y z e e n d (char ∗) ;
unsigned s h o r t acc = 0 ;

f o r (i n t i = 0 ; i < i n p u t x ; i ++)
{

a n a l y z e l o o p ("loop_1") ;
acc = acc + 1 ;

}

a n a l y z e e n d ("loop_1") ;

Listing 2. The instrumented loop.

each element has the same size. This makes the example
equivalent to executing the statement a = b + 1 and will
thus not be affected by the number of iterations in the loop.

f o r (i n t i = 0 ; i < i n p u t x ; i ++)
{

a [i] = b [i] + 1 ;
}

Listing 3. A loop that can be ignored.

4 Precision Analysis

In order to produce near-optimal results without covering
the entire search space a low-effort pass is performed first
(Section 4.1). This algorithm uses heuristics to perform
a fast analysis which often produces near optimal results,
enabling design exploration to take place. A high-effort
pass is designed to be used on the last iteration of design
exploration to cover more of the search space, potentially
giving better results (Section 4.3).

4.1 Low-effort Pass

We now describe the low-effort pass which uses the guar-
anteed error function generated at the start of precision anal-
ysis (see Figure 1) to check whether the selected precisions
meet the error requirement.

There are two methods of initializing the algorithm. The
first is to set all word-lengths to a given value w, currently we
let w = 64, but to speed up the algorithm, another option is to
start at a lower word-length as described in Section 4.2. As
shown in [6], a uniform word-length produces unnecessarily
large designs; to improve results the system supports non-
uniform word-lengths. First, integers that have been given
a floating-point type are set to integers as follows: each
precision word-length is set to zero; if the error requirement

 8500

 9000

 9500

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 0 20 40 60 80 100 120

C
o

s
t

Number of Iterations

RGB to YCbCr color conversion

Reduction size 1

Reduction size 5

Reduction size 10

Reduction size 15

Figure 2. A comparison of cost with the algo-
rithm aggression.

is still met and the error is below a certain constant value,
the precision is set to zero. The next stage is to increase each
word-length by a constant amount above the initialization
value. This increases the accuracy of the analysis because
more of the search space is available, simplifying the analysis
in [13] where the word-lengths are increased later on in the
process. Each word-length is then gradually reduced until the
accuracy requirement is broken. The ordering of reduction
is important since reducing one word-length has a cascading
effect on the rest. For this reason, the cost of a reduction
is measured. The reduction that causes the largest decrease
in cost will be performed first. If there are several with the
same cost, the one which increases the error by the smallest
amount is chosen. This is an aggressive approach. Another
possibility is performing the reduction with the lowest error
increase [13]. The problem with this is that the components
that cause a small amount of error will generally have a small
cost associated with them. If this is the case there is little
point of decreasing the word-length.

This approach of simply reducing word-lengths will not
always be the most optimal solution. It may be the case
that increasing a word-length is more appropriate because
another word-length with a higher cost can be decreased.
For this reason we use a more intensive (high-effort) pass to
cover more of the search space (described in Section 4.3).
Figure 2 shows how cost varies with the number of iterations.
It shows how, as the aggression of the algorithm is increased
with larger reduction sizes, the cost decreases more quickly,
but produces poorer final results.

4.2 Search Space Reduction

The first method of speeding-up the algorithm is by using
cost tables. These tables are small and can be traversed much
faster than a tree-structure.

 8500

 9000

 9500

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 13500

 0 20 40 60 80 100 120 140

C
o

s
t

Number of Iterations

RGB to YCbCr color conversion

Reduction size 1

Reduction size 5

Reduction size 10

Reduction size 15

Figure 3. A comparison of cost with the algo-
rithm aggression on a partitioned dataset.

We use a coarse precision analysis which performs a
binary search [10] to initialize the word-lengths to the mini-
mum possible value (a uniform word-length).

A third speedup comes from partitioning the data-set. For
small programs the method runs quickly giving near-optimal
results in most cases. For large programs it may take minutes
or even hours to execute. For this reason we partition the
problem using the following algorithm. First, a fine-grain
algorithm is applied to partitions of the entire array. The
key difference is that instead of reducing each word-length
by 1, it reduces each word-length by a larger number: the
larger the number, the more coarse-grain the optimization.
So if the precision is set to 10 it may be reduced by 3 each
time, for example: 10, 7, 4 etc. If the optimal value was
5 then the algorithm would terminate at 7. This algorithm
has several parameters that can be changed depending on
how aggressive it should be. For example when the numbers
are being decreased by a set value, it might be beneficial to
reduce them by x for the first 10 iterations and then x − 1
for the next 10 iterations, thus increasing the accuracy of the
approach as time goes on.

Figure 3 shows that when the size of the reduction is
decreased (becoming more fine-grain) on each partition, the
solution gets slightly worse because each partition is highly
optimized, so the fine-tuning has less effect. The plateaus
of the graph reflect the case when a partition cannot be
optimized anymore.

4.3 High-effort Pass

After the low-effort pass has been performed, a more
intensive analysis can take place.

There are many ways to produce near-optimal results for
intractable problems. We have chosen a genetic algorithm
and show that it can produce more accurate results than

previous work using simulated annealing [6].
Genetic algorithms have been used to solve intractable

problems. These algorithms will not search the entire design
space, but try to evolve the solutions in order to find a near-
optimal one quickly.

Our genetic algorithm has been adapted to find good so-
lutions quickly by having relatively large populations and
using a selective crossover approach (see Section 4.3.2). A
high mutation probability is used to ensure variation. Al-
though this makes the population very unstable, the relatively
large populations help to ensure that we can find a good re-
sult within a small number of iterations. We find that it can
usually improve the solution within the first 40 iterations
for our case studies, taking approximately 40 seconds on
populations of 1000.

4.3.1 The algorithm

1. Create an initial population based on fine-grain anal-
ysis. To add variation into the population, values are
randomly increased or decreased by a small1 random
value.

2. To evaluate a result we must use a cost function and an
error function. If the error requirement is broken then
the cost increases and is slightly higher than any cost
given when the error is within tolerances.

3. Create a new population by repeating the following
steps until the population is complete:

(a) Select two members of the population, a group of
numbers each representing a bit width. The better
the solution, the more likely it is to be chosen.

(b) We use a two-point crossover function. We be-
lieve that a systematic crossover [11], although it
may help guide the search, will be too slow on
non-trivial designs.

(c) We increase the mutation probability (usually
about 1 in 1000) to 1 in 10 (one of the param-
eters to the algorithm) in order to maintain a level
of diversity in the population as opposed to [12]
where the authors reject points that are too close
together. This method could mean that optimiza-
tion is not possible because it may only be feasible
to optimize points by a small amount.

4. Cross a member of the population (based on fitness)
with the best individual so far. This step is added to
try and stabilize the population and is described in Sec-
tion 4.3.2.

1This algorithm is parameterized based on the accuracy and speed re-
quirements.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Dot-product
25000pts

RGB to
YCbCr

Poly7DCTFFTB-Splines

A
re

a
 [

s
lic

e
s
]

Design

A comparison of uniform word-lengths (32/64) with
variable word-lengths

Uniform word-length (32/64-bit)
Variable word-length

Figure 4. A comparison of optimized word-
lengths with uniform word-lengths of 32/64-
bit for a selection of designs (16-bits of pre-
cision on the output).

5. If the terminating condition is not met (in this case the
number of iterations, but it could equally be the time
taken) then repeat from step 2 with the new population.

6. Perform another low-effort precision analysis to see if
any further reduction can occur.

4.3.2 Guiding the Search using Selective Crossover

In order to guide the search, another step has been added.
With a random probability, selected individuals (usually the
best results) are crossed over with the best member of the
population and sometimes the best result obtained at that
point. This ensures that the population does not simply get
replaced with bad results or results that do not fulfill the error
requirement. If an invalid population (one with not a single
result that meets the error requirement) is encountered this
method is iteratively applied for a random length of time.

5 Results

The motivation behind this system can be seen in Figure 4
which compares the area of several designs with 16-bits of
precision produced using our system with the area if using
single or double precision values. The reason for the large
difference in the FFT area is that in order to satisfy the output
precision, 64-bit values must be used; 32-bits will break the
accuracy requirement.

The word-length analyses are run on a Pentium 4
3.2GHz machine (Linux). The designs are synthesized us-
ing ASC 1.5 [8] and Xilinx ISE 8.1 to a Xilinx Virtex–4
XC4VLX100–12 FPGA (42,176 slices, 160 DSPs).

Case Study Output Precision Time taken Time taken (MiniBit) Slices only Slices + DSPs

DCT8
8 0.89 154.3 3,598 912 + 49

16 0.51 179.1 5,069 1,092 + 64

B–Splines
8 0.12 27.7 1,368 287 + 17
16 0.19 32.8 2,188 398 + 27

RGB to YCbCr
color conversion

8 0.09 8.9 812 265 + 11
16 0.13 9.7 1,192 358 + 16

Table 1. Comparison with MiniBit [6]. The time taken columns correspond to the time taken to com-
plete range and precision analysis.

Case Study Output Precision Time taken Slices only Slices + DSPs

FFT
8 0.06 2,614 303 + 24
16 0.06 4,787 565 + 44

Poly-7
8 0.05 2,271 298 + 14
16 0.02 3,580 389 + 28

25,000pt
Dot-Product

8 20.04 753 147 + 4
16 19.21 761 150 + 4

Table 2. Hardware utilization of the additional designs.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5 10 15 20 25

C
o

s
t

Target Precision

Polynomial of degree 4

Minibit
LengthFinder

Figure 5. A comparison of MiniBit and Length-
Finder (low-effort pass).

Figure 5 shows how LengthFinder has approximately a
1% improvement in accuracy over MiniBit [6] (within 2%
accuracy of ILP) at a fraction of the execution time (200
times faster for the DCT8).

Figure 6 shows how area increases as target precision
increases. It also shows that the low-effort pass is almost
optimal, having covered a small part of the search space (4%
maximum error reduction having used the high-effort pass).
The high-effort pass is required to fully optimize designs, but
it may not always be appropriate in iterative design strategies
and may have to be applied on the last iteration.

Table 1 compares the time taken to perform the case stud-
ies by LengthFinder and MiniBit [6]. The table does not com-

 2000

 2500

 3000

 3500

 4000

 10 12 14 16 18 20 22 24

A
re

a
 [

s
lic

e
s
]

Target Precision [bits]

B-Splines

Low-effort Pass
High-effort Pass

Figure 6. Improvements with the high-effort
pass.

pare them with regards to area for all designs because most
included manual optimizations (for example using shifts).
Figure 5 instead compares the cost of the two approaches,
which is directly correlated to the area; the lower the cost,
the lower the area. The times shown do not include the time
to execute the high-effort pass which is not used because
the improvements gained in this case are only about 1-2%.
The execution times shown in [13] are of the same order of
magnitude as [6] and have therefore been omitted.

Table 2 shows similar times to Table 1 with one exception.
The large dot product takes substantially longer than the
other results due to the presence of a large loop. Since there
is an accumulator in the loop, it cannot simply be ignored

 10

 20

 30

 40

 50

 60

 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
 [

s
e

c
o

n
d

s
]

Size

Dot-Product

Range analysis
Precision analysis

Figure 7. A graph showing how LengthFinder
execution time varies with loop size.

(see Section 3.2 for details). Figure 7 shows the correlation
between loop-size and algorithm runtime: as the size of
the loop increases, the algorithm’s runtime grows linearly.
The runtime of the range analysis is slightly higher than
necessary because our approach traverses a tree structure as
opposed to the precision analysis phase which automatically
generates optimized cost and error tables.

6 Conclusions

We have shown that in less than 1% of the time, Length-
Finder can generate lower cost designs. An approach that
produces near-optimal results rapidly is beneficial because
the place-and-route tools may slightly alter the design, inval-
idating some of the optimization.

Due to the large amount of time other systems take to
run [6, 13], we find them inappropriate for non-trivial de-
signs. Our solution runs faster, enabling design exploration.
MiniBit [6] has highly optimized error models and cost func-
tions due to manual intervention to speed up simulated an-
nealing. Our system works completely automatically, but
can be given user input to improve the results. The ROSE
input pass means code can be written in standard C/C++.

We are currently working on a dynamic approach which,
when combined with LengthFinder will give the user the
chance to trade off accuracy for an improvement in speed and
area. Further extensions to LengthFinder include support for
floating-point numbers, which we have currently only tested
in MATLAB, and power consumption optimizations [7].

7 Acknowledgments

The support of FP6 hArtes (Holistic Approach to Recon-
figurable Real Time Embedded Systems) project, Celoxica
and Xilinx is gratefully acknowledged.

References

[1] A. Abdul Gaffar, O. Mencer, W. Luk, P. Y. Cheung, and
N. Shirazi. Floating-point bitwidth analysis via automatic
differentiation. In Proceedings of the IEEE International
Conference on Field-Programmable Technology (FPT), pages
158–165, December 2002.

[2] S. Chen and S. Smith. Improving genetic algorithms by
search space reduction (with applications to flow shop
scheduling). In GECCO-99: Proceedings of the Genetic
and Evolutionary Computation Conference. Morgan Kauf-
mann, 1999.

[3] G. A. Constantinides and G. J. Woeginger. The complexity
of multiple wordlength assignment. Applied Mathematics
Letters, 15(2):137–140, 2001.

[4] K. Kum and W. Sung. Combined word-length optimization
and highlevel synthesis of digital signal processing systems.
IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems, 20(8):921–930, August 2001.

[5] Lawrence Livermore National Laboratory. ROSE.
[6] D. Lee, A. Abdul Gaffar, R. C. C. Cheung, O. Mencer,

W. Luk, and G. A. Constantinides. Accuracy-guaranteed
bit-width optimization. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 25(10),
October 2006.

[7] A. Mallik, D. Sinha, P. Banerjee, and H. Zhou. Low-power
optimization by smart bit-width allocation in a SystemC-
based ASIC design environment. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
26(3):447–455, March 2007.

[8] O. Mencer, D. J. Pearce, L. W. Howes, and W. Luk. Design
space exploration with A Stream Compiler. In IEEE Interna-
tional Conference on Field-Programmable Technology (FPT),
pages 270–277, 2003.

[9] R. Moore. Interval Analysis. Englewood Cliffs, NJ: Prentice-
Hall, 1966.

[10] W. G. Osborne, R. C. C. Cheung, J. G. F. Coutinho, and
W. Luk. Automatic accuracy guaranteed bit-width opti-
mization for fixed and floating-point systems. In Field-
Programmable Logic and Applications. 17th International
Conference, FPL 2007, August 2007.

[11] T. D. R. Konig. Improving genetic algorithms for protein
folding simulations by systematic crossover. Biosystems,
50(1), April 1999.

[12] K. Rasheed and H. Hirsh. Using case based learning to
improve genetic algorithm based design optimization. In
Proceedings of the 7th International Conference on Genetic
Algorithms (ICGA97). Morgan Kaufmann, 1997.

[13] S. Roy and P. Banerjee. An algorithm for trading off quan-
tization error with hardware resources for MATLAB-based
FPGA design. IEEE Transactions on Computers, 54(7), July
2005.

[14] J. Stolfi and L. de Figueiredo. Self-Validated Numerical
Methods and Applications. Institute for Pure and Applied
Mathematics (IMPA), Rio de Janeiro, 1997.

