
RAPID DESIGN SPACE VISUALISATION THROUGH HARDWARE/SOFTWARE
PARTITIONING

Simon A. Spacey, Wayne Luk, Paul H.J. Kelly and Daniel Kuhn

Department of Computing
Imperial College

London, UK

ABSTRACT
This paper introduces the 3SP Design Space Exploration
System. 3SP automatically quantifies acceleration oppor-
tunities for programs across a wide range of heterogeneous
architectures to allow designers to identify promising im-
plementation platforms before investing in a particular hard-
ware/software codesign. 3SP uses a novel program execu-
tion model to integrate comprehensive hardware characteris-
tics including clock speed, number of execution units, issue
rates, bandwidths and latencies with software program exe-
cution, parallelism, control and data flow measurements to
estimate codesign performance for evaluating opportunities
for hardware acceleration.

1. INTRODUCTION

The 3S Partitioner (3SP) uses 3S [1] program characteri-
sation measurements to automatically partition software for
execution on a range of heterogeneous computational archi-
tectures to allow rapid design space visualisation and op-
portunity exploration before committing to a particular im-
plementation platform. 3SP partitions software at the bi-
nary level and can be used to generate design curves for any
program written in any compilable language and produces a
list of code assignments to assist the designer in their initial
hardware/software partitioning decisions.

The main contribution delivered by 3SP is a novel high-
quality heuristic to quantify partition opportunities for a wide
range of architectures. Unlike previous work, the 3SP heuris-
tic is generally applicable and can be seamlessly applied to
architectures with superscalar out-of-order CISC processors
and architectures with tightly and loosely coupled reconfig-
urable components.

This paper begins with a brief overview of related work
in section 2. In section 3 the 3SP methodology is disclosed
and in section 4 results are presented that demonstrate the
use of the 3SP system to identify acceleration opportunities
for several benchmarks for a range of potential heteroge-
neous platforms. The paper continues with a discussion of
future work and conclusions in sections 5 and 6.

2. RELATED WORK

Table 1 compares the features of the architecture neutral 3SP
timing estimation heuristic against the heuristics of previous
automatic hardware/software partitioning research.

Characteristic [2] [3] [4] [5] 3SP
block size X X X X X
block iterations X X X X X
data flow 7 7 X X X
parallel execution slots 7 7 7 X X
communication bandwidth 7 7 7 X X
communication latency 7 7 7 7 X
control flow 7 7 7 7 X
execution cycle measurements 7 7 7 7 X

Table 1. Software characterisation metrics used in previous
heterogeneous partitioning heuristics.

In Stitt et al. [2], RISC binaries are decompiled and par-
titioned using loop iteration count profiling. By analysing
program binaries, the Stitt method has the advantage of be-
ing applicable to any compilable language, however the use
of only block size and iteration counts in the partitioning
heuristic means the method has limited applicability and is
most appropriate for simple single cycle ALUs and tightly
coupled architectures.

In Lysecky et al. [3], single loop kernels from RISC bi-
naries are partitioned to reconfigurable logic using hardware
loop profiling, on-chip CDFG analysis and warp processor
technology mapping. The Lysecky approach has the bene-
fit of providing low overhead profiling results through ded-
icated hardware however, like Stitt [2], the approach uses
loop iterations rather than actual timing measurements to
identify partition targets which limits the applicability of the
approach for architectures with variable-cycle superscalar
CPUs.

In Stitt et al. [4], RISC binaries are decompiled and par-
titioned with a greedy algorithm using execution loop pro-
filing and statically determined advanced CDFG informa-
tion. The Stitt approach has the benefit of reducing data flow
costs through shared data analysis but is focused on tightly



coupled architectures and does not take into account archi-
tecture communication latencies and bandwidths which are
required to partition for distributed hardware components.

In Atasu et al. [5], source code is partitioned using a
knapsack algorithm based on execution time estimation and
data flow requirements. Using source code has the disadvan-
tage of potentially excluding commercial applications where
source code is not available, however by including band-
width information, the Atasu approach has the advantage of
being applicable to distributed architectures with significant
communication bandwidth constraints.

Other relevant research includes automatic software par-
titioning [6–14], manual partitioning utilities [15, 16] and
program analysis systems [1, 17–19].

3. METHODOLOGY

3SP uses a unique combination of hardware and software
characteristics to quantify the acceleration potential of a pro-
gram for a range of architectures. The information 3SP uses
in its heuristic is summarised in table 2 below.

Hardware Characteristic Software Characteristic
τl cycle time execution time µpr

ωl parallel execution units parallel execution slots φpl

εl execution efficiency program code unit iterations ιp
λlm bus latency control flows χpq

βlm bus bandwidth data flows ηpq

Zl hardware size capacity size of code at each location zpl

Table 2. Hardware and software characteristics used by the
3SP execution model.

3SP obtains the hardware information it requires from a
user initialised base configuration file which 3SP automati-
cally sweeps over a range of values while calculating the ac-
celeration opportunities for a design-space. The current 3SP
implementation operates at the program basic block level us-
ing software characterisation information obtained from 3S
tools [1]; however the 3SP approach can be used to partition
at any level of program granularity including the functional
level provided the above software characteristic information
is available. The 3S tools currently used are: 3S hotspot for
CPU block-level execution timing, iteration counts and size
measurements, 3S parallelism for block level parallelism in-
formation, 3S callgrind for control flow information and 3S
data flow for inter-block data flow information.

3SP unifies the hardware and software characteristic in-
formation into a single execution time estimate for a set of
potential assignments of code sections p to locations l in an
architecture. The heuristic is then used to select the best
assignment of a program’s code sections to particular archi-
tectures using the partitioning algorithm described later in
this section.

The general 3SP timing estimate heuristic is intuitive
and represents the sum of execution times µpl plus the sum
of all communication times cpqlm for a program’s code sec-
tions assigned to an architecture’s locations:

t =
X
p

µpl +
X
pq

cpqlm (1)

where p, q are code section indices and l, m are location in-
dices and the execution µpl and communication cpqlm times
are defined by equations (2) and (3) below with reference to
the architecture characteristics of table 2.

µpl =
ιpφplτl

εl
(2)

cpqlm = χpqλlm +
ηpq

βlm
(3)

The εl parameter of equation (2) is a hardware imple-
mentation efficiency factor that can be considered the max-
imum sustainable issue rate per execution unit at hardware
location l and could be quoted at the program code section
level of granularity if required. Equation (2) can be used as a
substitute for the hotspot CPU cycle time measurements µpr

if the reference component r where the 3S measurements
are made is not part of the heterogeneous architecture being
modelled.
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Fig. 1. The Attractiveness Partitioning Algorithm (APA).

3SP uses the Attractiveness Partitioning Algorithm (APA)
depicted in figure 1 to rapidly generate high-quality parti-
tioning solutions that minimise the 3SP execution time es-
timates for code assignments to hardware. The APA algo-



rithm is a heuristic regret minimisation algorithm that par-
titions considerably faster than a theoretically optimal ap-
proach while retainig partition quality with high average par-
tition speedups as discussed in section 5.

The APA algorithm begins with all code sections as-
signed to an initial reference partition, calculates the 3SP
times for each code section if moved to each of the alternate
hardware locations in isolation, generates the attractiveness
metrics and moves the reference code section with the high-
est attractiveness (corresponding to the highest potential re-
gret) to it’s optimal hardware partition. APA then continues
varying the 3SP times to account for the modified cross par-
tition communication costs, recalculating the attractiveness
measures and moving the most attractive reference code sec-
tion to its optimal hardware location until no reference nodes
that can fit on an alternate hardware location exist. At each
iteration APA keeps a record of the 3SP execution time esti-
mate for the current partition assignments and APA returns
the partition assignments with the minimum 3SP execution
time observed on algorithm completion.

The attractiveness measure used by APA is the maxi-
mum potential single step 3SP speed-up opportunity lost
if the program code section p currently located at r is not
moved to location l divided by the hardware space require-
ment zpl of block p on l defined as:

αpl 6=r =
min({tpx | x ∈ locations\{l}}) − tpl

zpl
(4)

for a two component architecture equation (4) simplifies to:

αpl 6=r =
tpr − tpl

zpl
(5)

where tpr is the 3SP execution time estimate for the parti-
tion with p assigned to an initial reference partition r and tpl
the 3SP execution time estimate for the partition with p as-
signed to the alternate hardware location l. The simplified
two component αpl 6=r attractiveness ratio is reminiscent of
the regret minimisation Sharpe ratio used in financial port-
folio optimisation where a profit difference is divided by a
risk [22].

4. RESULTS

This section provides 3SP acceleration results for the syn-
chronous two component heterogeneous architecture pre-
sented in figure 2. The design space considered ranges from
an SoC architecture tightly coupled through a 32-bit bus op-
erating at the CPU/coprocessor speed, to a loosely coupled
architecture with the CPU and reconfigurable coprocessor
communicating through a 24x HyperTransport 3.0 bus with
the short packet store and forward (S&F) latency character-
istics [20], along with a variety of hardware sizes and imple-
mentation efficiencies.

CPU Memory

Reconfigurable
Coprocessor

Alternate Computational
Component

Reference Computational Component

Data FlowControl Flow

Fig. 2. The heterogeneous computational architecture ex-
plored in the results section of this paper.

Results are provided for six MiBench 1.0 [21] bench-
marks with actual 3S software execution measurements made
on a reference Intel Pentium 4 x86 machine for the MiBench
large data sets. The benchmarks are selected to cover the
six MiBench categories: crc32 from the Telecommunica-
tions class, jpeg (compression) from the Consumer Devices
class, stringsearch from Office Automation, sha from Se-
curity, susan (smoothing) from Automotive and Industrial
Control and dijkstra from the Network class. The small-
est benchmark is crc32 with 22 active basic blocks and the
largest is jpeg with 1792 active basic blocks. Unless oth-
erwise stated, all results assume a conservative maximum
hardware partition size of 256 x86 integer instructions.

4.1. High-Level Acceleration Opportunities

Figures 3 and 4 compare the 3SP program acceleration re-
sults for the six MiBench benchmark binaries compiled with
three different gcc optimisation levels. Figure 3 provides
results for a tightly coupled architecture and figure 4 for a
loosely coupled architecture.

The figures show that 3SP identifies accelerating parti-
tions with up to 33 times speed-up potential for the bench-
marks considered. The impact of the different compiler op-
tions are clearly visible with -O1 having a lower accelera-
tion potential than either -O2 or -O3 for some benchmarks
supporting the results of [6]. A designer can use these re-
ports to obtain a high level opportunity assessment for a
program before deciding whether the acceleration potential
justifies further analysis and, if so, which binary and archi-
tecture promises to deliver the best return on investment.
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Fig. 3. 3SP program accelerations for MiBench benchmarks
compiled with different gcc compiler optimisation levels on
a 32-bit bus SoC architecture operating at 345MHz.
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Fig. 4. 3SP program accelerations for MiBench benchmarks
compiled with different gcc compiler optimisation levels on
a loosely coupled distributed architecture with a 2GHz CPU
and a coprocessor operating at 345MHz.

4.2. Design Space Exploration

After obtaining a high-level acceleration opportunity report,
a designer can use 3SP to delve in detail into the design
space and explore the impact of individual or combinations
of architecture parameters on program acceleration.

Figures 5, 6 and 7 show the effect of partition size, band-
width and latency on partition performance for the dijkstra,
susan and sha MiBench benchmarks compiled with -O3 us-
ing the tightly coupled architecture report of figure 3 as a
starting point. The bandwidth and latency figures cover the
full range of architecture characteristics from single chips to
distributed architectures, demonstrating the general applica-
bility of the 3SP execution time model.

From figure 5 a designer could conclude that hardware
sizes greater than 64 instruction equivalents will not bring
significant benefit when accelerating dijkstra in the size range

considered. From figure 6 a designer can see that sha is
bandwidth sensitive, and from figure 7 the step transitions in
3SP acceleration potential could justify a designer expend-
ing extra effort on relative heterogeneous component place-
ment and buffering when attempting to accelerate either the
sha or susan benchmarks using 3SP based partitions.
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Fig. 5. 3SP program accelerations for MiBench benchmarks
compiled with gcc -O3 on a 345MHz 32-bit bus SoC ar-
chitecture with hardware of different maximum sizes.
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Fig. 6. 3SP program accelerations for MiBench benchmarks
compiled with gcc -O3 on a 345MHz SoC architecture
with different CPU to coprocessor bandwidths.

Figures 8 and 9 show the coprocessor clock speed and
implementation efficiencies that must be achieved to deliver
a required acceleration for the MiBench 1.0 dijkstra bench-
mark compiled with gcc -O3 and partitioned using 3SP
for a known CPU speed. The curves allow a designer to as-
sess the implementation characteristics required to deliver a
desired program acceleration, and can form a basis for hard-
ware cost/benefit analysis.
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Fig. 7. 3SP program accelerations for MiBench benchmarks
compiled with gcc -O3 on a 345MHz 32-bit bus SoC ar-
chitecture with different CPU to coprocessor latencies.
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Fig. 8. Maximum CPU speed that can be accelerated to
achieve a required 3SP partition speed-up for the dijkstra
benchmark compiled with gcc -O3 using a given copro-
cessor assuming a 2.89ns latency and 1.28GB/s bandwidth
bus.

5. EVALUATION AND FUTURE WORK

The 3SP methodology can be applied to any program par-
titioning granularity and a range of architecture configura-
tions and components including superscalar CPUs. How-
ever, 3SP is currently only implemented for block based par-
titioning of x86 integer programs because of limitations in
the current 3S [1] release (version 2.8) used to gather soft-
ware characterisation information.

The 3SP hardware/software partitions are generated qui-
ckly to allow rapid design space visualisation using the APA
heuristic algorithm and are not theoretically optimal for the
problem of partitioning with communication costs which is
NP-hard [24]. For the design spaces presented in this pa-
per, an unoptimised APA script implementation is up to 16.7
times faster than the optimal CPLEX solver and produces
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Fig. 9. Maximum CPU speed that can be accelerated to
achieve a required 3SP partition speed-up for the dijkstra
benchmark compiled with gcc -O3 using a given hard-
ware implementation efficiency assuming a 345MHz copro-
cessor with a 2.89ns call latency and 1.28GB/s bandwidth
data bus.

partitions with speedups less than 15% below the optimal
values on average. The speed of APA can be improved to
31.9 times that of CPELX at an additional 15% loss in opti-
mality by stopping APA on the first negative αpl 6=r value.

Apart from the sub-optimality of the APA partitioning
algorithm, the performance opportunities and transition points
estimated by 3SP could differ from a physical implementa-
tion because of:

1. simplifications in the 3SP execution time model,

2. inaccuracies in the 3S measurements,

3. differences between the actual physical implementa-
tion and the 3SP model.

However despite these issues, the 3SP design space curves
can still be of use to designers for quickly identifying trends
and the sensitivity of programs to architectural parameters.

Future work may address the above issues through more
complete simulation (for example using the 3S cache flow
tool to account for cache interactions on code section migra-
tion), the use of special hardware for actual timing measure-
ments [3] and the provision of alternative partitioning meth-
ods and levels of granularity. Additionally the 3SP model
could be extended with program code dependant technology
mappings and efficiency factors to allow detailed space es-
timation through calibration [13] and program code section
dependent data issue rates [15].

3SP could be further enhanced to implement the parti-
tions it identifies on real hardware. To do this, the 3SP
partitions could be readily re-compiled for hardware using
existing source code compilers [15, 16] with a pull-based
memory architecture [3, 4] and standard execution synchro-
nisation techniques [8, 9].



6. CONCLUSION

This paper presents an overview of the 3SP Software Parti-
tioning System. 3SP partitions software for execution on a
heterogeneous architecture and allows designers to explore
the hardware/software codesign before committing to a par-
ticular hardware platform. 3SP uses a novel heuristic that
combines actual software size, run-time, parallelism, control
and data flow measurements with hardware characteristics to
allow seamless design space exploration across tightly and
loosely coupled heterogeneous computational architectures.

In section 4 results are presented for MiBench bench-
marks demonstrating the ability of 3SP to identify signif-
icant program acceleration potentials through its automatic
binary partitioning algorithm for heterogeneous architectures.
Further, the results demonstrate the applicability of 3SP as a
design-tool for rapid investigation and visualisation of pro-
gram acceleration opportunities, sensitivities and transition
points through the comprehensive exploration of the design
space for possible hardware and software architectures.
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