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Abstract. Sampling is a common way to collect execution information
with performance event counters. However, the sampling data generated
from performance event counters tend to be massive if sampling with high
frequencies. Storing and processing a large amount of sampling data re-
quire much disk space and computing time. In this paper, we propose the
online linear regression method to reduce the size of the sampling data.
Our idea is to fit the sampling data with a series of straight lines. Each
line represents the variation trend of the sample values within the cor-
responding section. Then we store the parameters of the lines instead of
the sample values, resulting in a reduction of the sampling data size. The
SPEC CPU 2006 benchmarks are tested to verify the proposed online
linear regression method. The experimental result shows the online lin-
ear regression method can reduce the sampling data size effectively with
a low overhead, and retain the variation characteristic of the sampling
data with a normalized estimated standard deviation less than 0.1.

Key words: sampling data compression, performance event counters,
online linear regression

1 Introduction

Performance event counters provide a low overhead facility to collect runtime
information of the programs. A common way to use performance event counters
in performance analysis is to sample the running program at the overflow of
the specific performance event counter and store the runtime context including
the count values of other performance event counters for further investigations
[1][3][2]. Various tools based on the performance event counters provide such
sampling functionality with additional features like sampling period randomiza-
tion, sampling data aggregation and histograms [10][11][13][15].

However, the sampling with performance event counters tends to generate a
large amount of data for the analysis tools to process. Fig. 1 shows the sampling
data size for SPEC CPU 2006 benchmarks with different input sets at a sampling
frequency of 1 Mega unhalted core cycles.
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Fig. 1. Sampling data size for SPEC CPU 2006 benchmarks with different input sets
at a sampling frequency of 1 Mega unhalted core cycles

We can see in Fig. 1 that the sampling data size of most benchmarks are from
10M to 100M bytes. Some of the benchmarks even produce a sampling data size
around 300M bytes. The test machine has 2 GHz Xeon processors installed. So
1 Mega unhalted core cycles means up to 2,000 sampling interrupts per second,
or up to 2,000 samples per second. Higher sampling frequency means larger
sampling data size. A method to reduce the sampling data size is preferable
especially for high sampling frequencies.

One possible approach is to apply the data compression algorithms to the
sampling process. But the data compression algorithms are always computation
intensive, they are more often a performance analysis object than a performance
analysis tool. Alternative approach is to omit some of the samples in the whole
record set, leading to a lossy compression of the sampling data. This is possible
since the sampling data of a little lower sampling frequencies are somehow similar
to those of higher frequencies. So if we omit some samples during the sampling,
we may still get a profile of the program close to the original figure. Furthermore,
instead of omitting the samples blindly, we may be able to pick the samples
according to the characteristics of the sampling data. Since the sampling data
are basically the counts of some performance events, the change in the count
values is apparently one of the characteristics of the sampling data. If we capture
the variation of the count values rather than record each piece of the sampling
data, we are able to the reduce the sampling data size effectively while retaining
the variation characteristic of the data.



In this paper, we address the issue of runtime sampling data size reduction
by proposing the online linear regression to transform the sampling data to
regression lines. The resultant regression lines are expected to fit the original
data well so as to reflect the variation characteristic of the sampling data. Main
contributions of our work are outlined as follows:

1. A method to do online linear regression for the sampling data;
2. A module based on pfmon[15] tool implementing the proposed online linear

regression method.
3. Experiment on SPEC CPU 2006 benchmarks to verify online linear regres-

sion method;

2 Related Work

Performance event counters are commonly used in performance analysis. Model
based processor bottleneck analysis is discussed in [1], [2], [3] and [4]. Some re-
searchers investigate the data mining techniques to interpret the sampling data
as in [5] and [6]. In [7], the performance counters are used to guide the compiler
optimization options. Workload characterization with performance counters is
also a focus of study like in [8] and [9]. Despite the various research work with
performance event counters, the sampling data reduction is not specifically stud-
ied.

Many tools based on performance event counters are developed. Intel and
AMD have dedicated tools for their processors [10][11]. PAPI [12] aims to pro-
vide a portable interface to utilize performance counters on various platforms.
OProfile [13] is an open source system profiling tool based on performance coun-
ters for Linux. HPCToolKit [14] provides executable analysis with statistical
sampling. The perfmon [15] used in this paper is also an open source tool with
thread-specific counting and sampling functionalities.

3 Method

We notice that performance event counters count the occurrence of specified
events during the performance monitoring. That is to say the performance event
counter values always increase with the sampling process. So the idea arises
that maybe we can use straight lines to fit the event count values against the
sampling period. Since the event count values may change abruptly, the fitting
result could be multiple lines to reflect the changes in the sampling data, leading
to a piecewise linear regression problem [17]. We adopt the following method to
solve it in an online situation.

3.1 Definitions

Suppose the sampling data is a series of the records,

(x1,y1), ..., (xi,yi), ..., (xn,yn)



where n is the number of samples. In practice, clock cycles or instructions are al-
ways used as the sampling period. So xi may be clock cycle counts or instruction
counts, or any other count values that used as the sampling period. yi, on the
other hand, is the vector of count values sampled in the sampling interrupts. yi

can be cache misses, mispredicted branches, floating point operations and other
count values interested. For most cases, yi is a group of count values recorded
with available performance event counters. To ease the demonstration of our
online linear regression method, we assume yi contains one data item, hence
written in yi in the succeeding sections. It is able to extend the online linear
regression method to the case that yi represents a vector of count values.

Let y = kx + b represent a line. After online linear regression, the sampling
data will be represented with a series of lines,

(x1, k1, b1), ..., (xi, ki, bi), ..., (xm, km, bm)

where ki and bi are the slope and intercept of the ith line respectively, and xi

indicates the start and end point of the (i − 1)th and ith lines. yi is omitted in
the lines since we can calculate ŷi = kixi + bi as the approximation of yi.

Obviously each line has more parameters than the original sampling record.
So if we want to reduce the sampling data size, we should make the number of
lines below two third of the sample number, or nearly half of the sample number
if yi contains more than one data item.

3.2 Scaling

Since different programs and different events may produce count values far dif-
ferent in the actual value, scaling is needed to regulate the ranges of the count
values. We scale the count values by dividing them with the initial value of the
whole count value series. Let (ẋ1, ẏ1), ..., (ẋi, ẏi), ..., (ẋn, ẏn) represent the scaled
sampling data.

ẋi =
xi

x1
, ẏi =

yi

y1

Since the count values are seldom zero from the beginning, it is safe to use the
division in the above expressions. In the following sections we assume that the
xi and yi are scaled for simplicity.

3.3 Online Linear Regression

Linear regression of a group of paired data can be solved by least squares method.
The formulas to calculate the slope k and intercept b for y = kx + b are [18]:

k =
n

∑n
i=1 xiyi −

∑n
i=1 xi

∑n
i=1 yi

n
∑n

i=1 x2
i − (

∑n
i=1 xi)

2 (1)

b =
∑n

i=1 yi

∑n
i=1 x2

i −
∑n

i=1 xi

∑n
i=1 xiyi

n
∑n

i=1 x2
i − (

∑n
i=1 xi)

2 (2)



Define the following variables to represent the sum terms in the formulas (1)
and (2).

Sx(n) =
n∑

i=1

xi , Sx2(n) =
n∑

i=1

x2
i , Sy(n) =

n∑
i=1

yi ,

Sy2(n) =
n∑

i=1

y2
i , Sxy(n) =

n∑
i=1

xiyi

Substitute them in the formulas and add the subscripts for k and b, then we
have

kn =
nSxy(n) − Sx(n)Sy(n)

nSx2(n) −
(
Sx(n)

)2 (3)

bn =
Sy(n)Sx2(n) − Sx(n)Sxy(n)

nSx2(n) −
(
Sx(n)

)2 (4)

If we get a new sample, (xn+1, yn+1), simply apply the new sample to the
formulas (3) and (4):

kn+1 =
(n + 1)Sxy(n+1) − Sx(n+1)Sy(n+1)

(n + 1)Sx2(n+1) −
(
Sx(n+1)

)2

=
(n + 1)

(
Sxy(n) + xn+1yn+1

)
−

(
Sx(n) + xn+1

) (
Sy(n) + yn+1

)
(n + 1)

(
Sx2(n) + x2

n+1

)
−

(
Sx(n) + xn+1

)2

(5)

bn+1 =
Sy(n+1)Sx2(n+1) − Sx(n+1)Sxy(n+1)

(n + 1)Sx2(n+1) −
(
Sx(n+1)

)2

=

(
Sy(n) + yn+1

) (
Sx2(n) + x2

n+1

)
−

(
Sx(n) + xn+1

) (
Sxy(n) + xn+1yn+1

)
(n + 1)

(
Sx2(n) + x2

n+1

)
−

(
Sx(n) + xn+1

)2

(6)

3.4 Decision of Creating New Lines

If the count values increase smoothly, then we can fit the count values with only
one line, leading to a maximal reduction of sampling data size. But this is a case
rarely to happen. In reality, we need multiple lines to fit the sampling data. As
a result, we have to decide when to end the current linear regression and start a
new line.

A common approach is to compare the residual rn+1 of the new sample
(xn+1, yn+1) with the standard deviation σ of the current line. If rn+1 is much
greater than σ, i.e.

rn+1 > 3σ



where
rn+1 = |yn+1 − ŷn+1|, ŷn+1 = knxn+1 + bn

then the new sample is regarded as an outlier of the current line. So we end the
current line at (xn, yn), and start a new line from (xn, yn) to the new sample
(xn+1, yn+1). Otherwise, if rn+1 < 3σ, we include the new sample (xn+1, yn+1)
into the current line, and update the slope kn and intercept bn to kn+1 and bn+1

with the formulas (5) and (6).
The standard deviation σ is estimated from the residuals of the current line.

Let the σ̂ represent the estimator of the standard deviation σ.

σ̂ =

√√√√ 1
n − 2

n∑
i=1

(yi − ŷi)
2 (7)

Deduce the residuals to sums of the samples

n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − kxi − b)2

=
n∑

i=1

y2
i +

n∑
i=1

k2x2
i +

n∑
i=1

b2 −
n∑

i=1

2kxiyi −
n∑

i=1

2byi +
n∑

i=1

2kbxi

= Sy2(n) + k2Sx2(n) + nb2 − 2kSxy(n) − 2bSy(n) + 2kbSx(n)

(8)

The k and b in the above formula (8) refer to the slope kn and intercept bn of
the current line.

If n = 2 which is the case when a new line is just created, the σ is not able
to be estimated with the formula (7). In this case, we adopt a heuristic that is

|yn+1 − ŷn+1| < α|ŷn+1|

where we set α = 0.01 in our experiment.

3.5 Implementation

Combine the above method together, the procedure to perform the online linear
regression is outlined below.

Procedure Online Linear Regression

Online_linear_regression (alpha)
{

Initialize n, k, b, Sx, Sy, Sx2, Sy2, Sxy to zero;
for each new sample (x, y) {

if( n > 1 ) {



Calculate slope k and intercept b of the current line
from Sx, Sy, Sx2, Sy2, Sxy;

Estimate the standard deviation
(using alpha for the case n==2);

Compare residual of the new sample
with the estimated standard deviation;

if( the residual of the new sample is too big ) {
Print out the current line;
Create a new line which starts from

the last sample of the current line;
n = 1;
Reset Sx, Sy, Sx2, Sy2, Sxy regarding the

last sample of the current line;
}

}
Update Sx, Sy, Sx2, Sy2, Sxy with the new sample (x, y);
n = n + 1;

}
Calculate k and b;
Print out the current line;

}

The procedure processes the samples one by one, without storing them and
tracing back. This means only a constantly bounded computation time is added
to the processing time of each sample, which is suitable for online situations. We
implement the above procedure as a custom sampling module in the pfmon [15]
tool. The user can use the command in below under Linux to invoke the online
linear regression sampling.

pfmon --smpl-module=linear-regression ...

The online linear regression sampling module works as other built-in sampling
modules in pfmon [15]. When the execution finishes, the module will print out
the information of the lines ever created during the sampling.

4 Experimental Evaluation

We perform the experiment on SPEC CPU 2006[16] benchmarks with the online
linear regression method. All benchmarks with different input sets in SPEC CPU
2006 have been tested, 57 test cases in total.

4.1 Test Platform

The test platform is a workstation with 2 Intel Xeon quad-core processors run-
ning at 2 GHz. The size of the system RAM is 8 GB.



SPEC CPU 2006 benchmarks version 1.0 is installed on the system, and built
with GCC and GFortran 4.1.2. Optimization switch for the GCC and GFortran
is -O2.

Operating system is Ubuntu Linux 8.04 with kernel 2.6.26.2, running in 64-
bit mode. The kernel is patched with perfmon[15] interface to the performance
event counters. The version of perfmon kernel patch is 2.81 which is required
for pfmon[15] tool version 3.52. pfmon is used to perform the sampling with the
custom online linear regression module.

4.2 Test Results

We run the pfmon with online linear regression sampling module with the fol-
lowing options:

– The performance events to sample are Intel Core architectural events.
– The sampling period is set to 1 Mega unhalted core cycles with randomiza-

tion.
– The event to perform the online linear regression is last level cache misses.

Choosing the last level cache misses to do online linear regression is based on the
consideration that the last level cache misses are not easy to predict, thus should
be a good testing event. It should be noted that the online linear regression
method is not limited to the options we use in the experiment. Other performance
events and sampling periods supported by pfmon [15] are able to apply to the
online linear regression.

Data size reduction ratio Fig. 2 shows the reduction ratio of sampling data
for SPEC CPU 2006 benchmarks with different input sets.

It can be seen from the Fig. 2 that most benchmarks result in a reduction
ratio from 10 to 1000. Benchmark 453.povray with input set 1 gets the maximal
reduction ratio at about 4000, while 450.soplex with input set 2 gets the minimal
reduction ratio at about 6.

Fig. 3 and Fig. 4 show the sample points and the corresponding regression
lines generated from these sample points. Apparently, benchmark 450.soplex
with input set 2 has a better fit than benchmark 453.povray with input set 1.
This is reasonable since benchmark 450.soplex with input set 2 has the minimal
sampling data reduction ratio, while 453.povray with input set 1 has the maximal
data reduction ratio, which means 450.soplex with input set 2 has more regres-
sion lines for its samples than 453.povray with input set 1 does, thus leading to
a better fitting.

Data fitness Fig. 5 shows the maximal normalized estimated standard devi-
ation of the lines for SPEC CPU 2006 benchmarks with different input sets
(gammq[18] is not used due to its computation intensive iterations). The maxi-
mal normalized estimated standard deviation (MNESD) is calculated by

MNESD =
σ̂max

ymax − ymin
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Fig. 2. Reduction ratio of sampling data for SPEC CPU 2006 benchmarks with differ-
ent input sets

Fig. 3. Fitting result of the benchmark 450.soplex with input set 2 which has minimal
sampling data reduction ratio



Fig. 4. Fitting result of the benchmark 453.povray with input set 1 which has maximal
sampling data reduction ratio

where σ̂max is the maximal estimated standard deviation, ymax and ymin are
the maximal and minimal values of y in the sampling. The MNESD is used as a
measurement of how well the resultant lines fit the original sampling data.

From the Fig. 5, we can find that benchmark 998.specrand has the largest
maximal MNESD, followed by the 999.specrand and 436.cactusADM, while
470.lbm and 410.bwaves have the least maximal MNESD, all with input set
1. Fig. 7 and Fig. 6 show the fitting results of benchmark 998.specrand and
436.cactusADM (999.specrand is similar to 998.specrand hence omitted), while
Fig. 8 and Fig. 9 show the fitting results of benchmark 410.bwaves and 470.lbm.

Obviously 998.specrand and 436.cactusADM have bad fitting results. In the
Fig. 6, the last long regression line is far different from the curved part of the
sample points. Fig.7 has the similar situation. A long regression line goes through
the scattered sample points. This also happens in Fig. 4 where the last long
regression line differs from the sample points.

The reason for this we think is that the long regression line is a result of
accumulated errors from previous steps in online linear regression. Recall that
the online linear regression is performed on the samples in a stepwise manner,
there is a possibility that the succeeding samples are not very different from each
other. So they are not regarded as outliers. But these samples may continuously
move toward one direction for a period. Consequently, the estimated standard
deviation may get larger and larger, allowing sample points further from the
original line to be included without generating a new line. The final accumulated
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Fig. 5. Maximal normalized estimated standard deviation for SPEC CPU 2006 bench-
marks with different input sets

effect is that all the samples afterwards may be fitted to one line as we have seen
in Fig. 4, Fig. 6 and Fig. 7.

Fortunately, this is not a common situation in the experiment. Most test
cases show a fit similar in Fig. 8 and Fig. 9 for both smooth sample points as in
Fig. 9 and ragged ones as in the beginning part of Fig. 8.

Overhead We investigate the overhead of the online linear regression of the
sampling data during the test. The overhead is recorded by counting the time
stamps elapsed when performing the linear regression on the samples. The resul-
tant count of time stamps is then divided by the total number of time stamps for
the whole execution, showing the proportion of the online linear regression time
over the total run time of the program. Fig. 10 depicts the calculated overhead
of the online linear regression on SPEC CPU 2006 benchmarks. It can be seen in
the figure that the overheads of all the tested benchmarks are below 1.7% at the
sampling period of 1 mega unhalted CPU core cycles, or about 2,000 samples
per second.

5 Conclusion

In this paper, we demonstrate the online linear regression method. The online
linear regression is proposed to reduce the size of the sampling data generated
by performance event counters, while keep track of the variation characteristic



Fig. 6. Fitting result of the benchmark 436.cactusADM with input set 1 which has the
highest maximal normalized estimated standard deviation

Fig. 7. Fitting result of the benchmark 998.specrand with input set 1 which has a high
maximal normalized estimated standard deviation



Fig. 8. Fitting result of the benchmark 410.bwaves with input set 1 which has a low
maximal normalized estimated standard deviation

Fig. 9. Fitting result of the benchmark 470.lbm with input set 1 which has a low
maximal normalized estimated standard deviation
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Fig. 10. Overhead of the online linear regression against the total execution time of
the program, tested with SPEC CPU 2006 benchmarks at 1 Mega unhalted CPU core
cycles or about 2,000 samples per second

of the sampling data. The linear regression is performed on the samples in a
stepwise manner, with one sample getting processed at a time. This helps to
make the linear regression operation suitable for online situation.

Experiment on the SPEC CPU 2006 benchmarks shows that the sampling
data size reduction ratio ranges from 6 to about 4000 with typical ratios from 10
to 100, calculated by dividing the number of samples with the number of lines.
The overheads of online linear regression for all benchmarks are less than 1.7%.
And the lines fit the sample points well for most benchmarks.

However the experiment reveals that for a few cases the fitting result of linear
regression is not as good as others due to the some subtle variation in the sam-
pling data, though this is not a common situation seen in the experiment. This
suggests that the online linear regression may be more suitable to use as a quick
profiling method. One can sample a program with online linear regression to get
an initial set of sampling data which outlines the variation of the performance
event count values. Since this set of sampling data is relatively small, it is easy
to analyze and identify interesting parts. Then the further investigations can be
planned to focus on the interested parts for more details. Our future work is to
employ the online linear regression in the program profiling framework based on
performance event counters.
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