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Université d’Evry,

Cours Monseigneur Romero,
91025 Evry, France.

email: delosme@lami.univ-evry.fr

Abstract

Very high performance architectures can be designed for
data intensive and latency tolerant applications by maxi-
mizing the parallelism and pipelining at the algorithm and
bit level. This is achieved by combining such technologies
as reconfigurable or adaptive computing and CORDIC style
arithmetic, for computing (possibly hyperbolic) rotations,
multiply, divide, and related higher order functions (e.g.
square-root, multidimensional rotations). Reconfiguration
allows adapting the implementation of such functions to the
specific needs of individual or specific sets of applications,
from multi-media to radar and sonar, hence creating appli-
cation specific CORDIC-style implementations. We show a
high-throughput CORDIC for reconfigurable computing, a
low latency CORDIC, and discuss an application to adap-
tive filtering (normalized ladder algorithm).

1. Introduction

The fundamental principles behind the CORDIC algorithms
of Volder [10] and Walther [11] can be found in their scalar
form in the work of Chen [2]. Ahmed showed [1] that
if Chen’s convergence computation technique is applied to
complex numbers instead of real numbers (as assumed by
Chen) one obtains the class of CORDIC algorithms. The
method of formally “replacing” real by complex numbers
was extended in [4], [3] to obtain for instance CORDIC al-
gorithms for quaternions and pseudo-quaternions.

When the CORDIC functions, especially the higher or-
der functions, are matched to applications—a system de-
sign issue—the real power of CORDICs and related algo-
rithms can be exploited. Field-Programmable Gate Arrays
(FPGAs) and other fine grain architectural features, enable
effective hardware support of such complex functions, sim-
ilar to micro-code or firmware (library functions). This al-
lows hiding the complexity involved from a typical applica-
tions level programmer.

Custom design of CORDIC units for individual applica-
tions is a complex task, requiring both specialized low-level
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Figure 1: Layers of the PAM-Blox design environment: DIGI-
TAL PamDC compiles the design to the Xilinx Netlist Format XNF;
PamBlox are interacting with PamDC objects, PaModules interact
with PamBlox and PamDC, and the application can access fea-
tures from all three layers below.

design tools and symbolic computing tools that support a
domain expert. Sophisticated tools that can support a typ-
ical programmer will eventually become available. In the
mean-time domain experts will have to use today’s tools to
create winning designs using these ideas in advanced appli-
cations.

2. PAM-Blox: Object-Oriented Hardware Design

For datapaths, hand layouts are typically more efficient than
compiled behavioral descriptions. In order to exploit the
efficiency of hand design while simplifying the design pro-
cess, we propose a bottom-up approach to compilation for
custom computing machines. By creating a powerful and
highly optimized parameterizable repository of circuit gen-
erators, PAM-Blox [5], we add a level of abstraction that
preserves optimal area and performance while simplifying
the design process.

Figure 1 shows an overview of the PAM-Blox system.
We use PAM-Blox as the name for the entire design envi-
ronment. PamBlox stands for templates of hardware objects
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Figure 2:Layout of the PP-CORDIC, placed with PAM-Blox.

while the more complex PaModules are objects with a fixed
size.

PAM-Blox simplifies the design of datapaths forFPGAs
by implementing an object-oriented hierarchy in C++. With
PAM-Blox, hardware designers can benefit from some of
the advantages of object-oriented system design that the soft-
ware industry has learned to cherish during the last decade.
Efficient use of function overloading, virtual functions and
templates make PAM-Blox a competitive and yet simple to
use design environment.

3. High Throughput CORDIC

We use the PAM-Blox environment to create the optimized,
parallel CORDIC functional units. Currently the CORDICs
are implemented as PaModules with a fixed bitwidth. A
floorplan for a parallel-parallel (PP) CORDIC is shown in
Figure 2. The 8-bit PP-CORDIC requires 123 CLBs while
a serial-parallel (SP) CORDIC, with 23 serial adders re-
quires 171 CLBs. In contrast, a PS-CORDIC iterating with
3 ADD/SUB modules on the CORDIC equations would have
a very long latency of over 200 ns, and an area penalty for
thez lookup table which is hardwired in the parallel case.

Although serial arithmetic usually takes less area, the
SP-CORDIC occupies 30% more area than the PP-CORDIC.
This is mainly due to dependencies between the stages. A
stage needs to know the sign ofz of the previous stage in
order to select the sign for its own computation. The re-
sulting overhead of storing the intermediate values while
waiting for the sign to compute and the increased overhead
for control logic, make the serial CORDIC a less desirable
CORDIC solution.

The parallel CORDIC achieves a throughput of 33 mil-
lion rotations per second at 33 MHz PCI clock speed. With
current FPGA technology the throughput would scale up
easily to 100 MHz ! 100 million rotations per second.

4. Optimization using Hardware Synthesis

For the implementation of CORDIC in hardware, many of
the operators (adders, subtractors) can be optimized. In
particular, optimization can be performed when one of the
operands is a constant (calculation of thez factors) or when
some input bits have the same value (calculation of thex
andy factors after shifting). We apply logic and architectual
optimization for a non-pipelined version of the CORDIC
and synthesize the design for both FPGA and ASIC (Appli-
cation Specific Integrated Circuit).

4.1. Logic Optimization

In general, the behavior of circuits can be represented by ab-
stract models such as boolean functions and finite state ma-
chines which can be derived from higher-level models. In
the case of combinational logic (i.e. circuits without feed-
back), the abstract model is a set of boolean functions and
relations on the circuit’s inputs and outputs. These func-
tions can be simplified for a given target architecture by em-
ploying logic synthesis and optimization [6]. Very powerful
optimization can be performed under both area or time con-
straints.

For arithmetic operations, further optimization can also
be performed at the architectural level by looking at differ-
ent architectures of operators (e.g. ripple carry adder, carry
save adder, etc.), trying to increase bit-level parallelism. In
the past few years, such techniques have also been inte-
grated within commercial tools [8] and allow quick estima-
tion of the performance of multiple architectures.

4.2. Synthesis for ASIC

For ASIC synthesis we use Synopsys Design Compiler to
synthesize the circuit and Synopsys Behavioral Compiler
[8] for the arithmetic optimization. The target technology is
the tsms 0.35 micron logic process. We study the area/latency
trade-off by changing the constraints on the optimizations.
Figure 3 presents the area-time curves with and without ar-
chitectual and logic optimizations. We observe that the cir-
cuit after optimization is about 20% smaller for a given la-
tency and can be as much as 20% faster. The smallest de-
sign (with optimization) had a total area of 57K library units
and a latency of 41ns, compared to an area of 75K library
units and a latency of 43ns without optimization. Minimal
latency with optimization is 17.94ns for an area of 153K li-
brary units. Without optimization the latency is 23.45ns on
the same area as the optimized design.

4.3. Synthesis for FPGA

For the purpose of reconfigurable computing we try to op-
timize a CORDIC architecture for Xilinx XC4000 FPGAs.
For FPGA synthesis we use Synopsys FPGA Express [7].
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Figure 3: The graph shows the area-time curves for the synthe-
sized CORDICs

The results after optimization are comparable to the PAM-
Blox results found in section 3: after place&route the area
of the circuit is 113 CLBs with a pure combinational la-
tency (without registers) of 141 ns. We conclude that for
FPGAs, the possible optimizations are restricted by the in-
ternal architecture of the CLBs – especially the fast carry-
chains. This result matches the results from our initial study
on PAM-Blox [5].

5. CORDIC for normalized ladder algorithms

In order to illustrate some of the reasoning and manipula-
tions involved when deriving CORDIC-style implementa-
tions for specific applications, we revisit an algorithm of
Lee and Morf, summed up in [4] and detailed in Section 7
of the survey [9]. The adaptive ladder (or lattice) filter is
an FIR filter used for the prediction of stochastic processes,
e.g. for channel equalization. It is composed ofn cascaded
feed-forward stages,n being the order of the filter. Each
stage has two outputs, the so-called forward and backward
innovation, which are sent on to the next stage (the back-
ward innovation being delayed by one sample period before
being used). Each stage is parameterized by a “gain”, the
partial correlation between the forward and backward inno-
vation. This gain varies with time and is updated whenever
new values of the innovations are computed, i.e. each time
there is a new sample; this is the “adaptive” part of the filter.
Within each stage a time update consists in 3 equations (the
stage and time indices are not shown here)8<

:
�+ = ����� + ��
�+ = (� � �+�)=(��+��)
�+ = (� � �+�)=(��+��)

(1)

where� denotes the normalized partial correlations,� and
� denote the normalized backward and forward innovations
respectively,�+, �+ and�+ are the updated variables, and
�x =

p
1� x2.

The relations (1) are normalized versions of “Schur com-
plement” identities relating the covariances of random vari-
ables. Since the Schur complement identities essentially
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Figure 4: Geometric interpretation of the normalized ladder al-
gorithm in terms of spherical trigonometry. From the information
fRb, to the left of (L), we deduce the informationBrF to the right
of (L). This amounts to computing a rotation, fromB toF , as the
composition of two rotations, fromB toR and fromR toF .

capture the theorem of Pythagoras in Euclidean space, nor-
malization, which amounts to projecting the objects from
Euclidean space onto the unit sphere, yields identities of
spherical geometry. As a result the relations (1) have an
elegant interpretation in terms of spherical trigonometry.

Considering the triangleRBF in figure 4, and measur-
ing both the anglesR, B, F and the sidesr, b, f in radians,
we can write 3 identities from spherical trigonometry:8<
:

cos r = cosR � sin b � sin f + cos b � cos f
cosB = (cos b � cos r � cos f)=(sin r � sin f)
cosF = (cos f � cos r � cos b)=(sin r � sin b)

(2)

These identities enable the determination of information to
the right of the dashed line(L) in Figure 4 in terms of in-
formation to the left of(L).

With the correspondence�
� = cosR ; � = cos b ; � = cos f ;
�+ = cos r ; �+ = cosB ; �+ = cosF ;

(3)

relations (1) are seen as relations providing the solution of
a spherical triangle given two sides and the included angle.
Such equations are found in navigation on the Earth’s sur-
face. Volder [10] developed the CORDIC procedure pre-
cisely to solve digitally such problems and showed how to
link CORDIC rotations for that purpose. Following a simi-
lar vein, Lee et al. [4] proposed a way for linking the 3 types
of CORDIC operations of Walther [11] to evaluate the ex-
pressions (1) (this way is also presented in [9], with a slight
modification). Is this way optimal? Can our geometrical



insight enable us to improve on it? Since the work [3] on
quaternion CORDIC algorithms we know how to perform
3-D rotations in a CORDIC-like fashion by working simul-
taneously on all 3 components. Can this be exploited?

Geometrically, we are interested in the result of the com-
position of the “backward” rotation fromB to R alongf
and the “forward” rotation fromR to F along b; the co-
sine of the angleR between the sidesf andb corresponds
naturally to the normalized partial correlation. That result
corresponds to the rotation fromB toF alongr, whose pa-
rameters are what we seek.

Compositions of rotations in 3-D space are best repre-
sented in terms of quaternions. Simply, and to facilitate
the relation with [3], rotation by an angle� around an axis
~u = [�; �; ]T with �2+�2+2 = 1 is evaluated by means
of a multiplication by the matrix

Q =

2
664

w �x �y �z
x w �z y
y z w �x
z �y x w

3
775

where w = cos � (4a)

and

2
4 x

y
z

3
5=

2
4 �

�


3
5� sin �:

The product of the rotation by� around~u (matrixQ) fol-
lowed by the rotation by�0 around~u0 (matrixQ0) is given
by the first column ofQ0Q, hence, in order to determine the
resulting rotation angle� and direction~v, it is sufficient to
multiply the first column ofQ byQ0. The evaluation of the
first column of the product yields�

cos�
~v � sin�

�
= (4b)

�
cos �0� cos � � (~u0

� ~u) � sin �0� sin �
~u0
� sin �0� cos � + ~u � cos �0� sin � + (~u0

� ~u) � sin �0� sin �

�
:

In our casecos �0=cos b=�, ~u0=[0; 0; 1]T;cos �=cosf=�,
~u = [sinR; 0;� cosR]T= [��; 0;��]T; cos� = cos r = �+,
~u �~v = cosB = �+, ~u0�~v = cosF = �+. Thus, specifically,
to compose the rotations we compute the product2
64

� 0 0 ���
0 � ��� 0
0 �� � 0
�� 0 0 �

3
75
2
64

�

����
0

����

3
75 = (4c)

2
64

�� + �����"
0
0
1

#
� ��� +

"
��
0
��

#
� ��� +

"
0
��
0

#
� ����

3
75=

2
64

�+
�����
������

��� � ����

3
75 :

Hence(~u �~v) � ��+ = ��2���� �(���� ����) = ��� � ���� and
(~u0� ~v) � ��+ = ��� � ����.

SinceQ0 is the composition of 2 independent plane ro-
tations, it is preferable here to use standard 2-D CORDIC
than a quaternion CORDIC algorithm, and apply the 2 stan-
dard 2-D CORDIC in parallel for speed. Hence, first we
compute�
�+
��

�
=

�
� ���
�� �

� �
�
����

�
and �y = � � ���� (5a)

then we evaluate

�� = (�� � �y � � � ��) (5b)

and finally we obtain

�+ = ��=��+ and �+ = ��=��+ : (5c)

This way of decomposing the equations (1), guided by our
geometric interpretation, leads to a computational structure
different from that of [4], [9].

Proceeding with our geometrical approach we shall also
use the relation between the sines of the angles and sides of
a spherical triangle (“the law of sines”),

��

��+
=

��+
��

=
��+
��

; (6)

to update the sines�� and��:

��+ = �� � (��=��+) and ��+ = �� � (��=��+) : (5d)

Finally, casting these computations in terms ofpairs of
2-D CORDIC operators (represented below by�� and�� ),
where the operators do not have the “Z-factor” part that
computes the angles explicitly since it is not needed here,
we obtain:

Step 1

�� rotate
�

�

��

�
to force the 2nd component to 0 and thus

obtain the encoding (sign sequence) of the angleR,

�� simultaneously apply to the vector
�

��
0

�
the rotation

R(R) =

�
� ���
�� �

�
; determined by the sign sequence for

the angleR, to obtain
�

���
����

�
.

Step 2
�� use “linear” CORDIC iterations to find the representation
of � as a sequence of signs (i.e. non-restoring division of�
by 1) and simultaneously build up the product� � ���� = �y,

�� apply to the vector

�
�
����

�
the rotationR(b), deter-

mined by the encoding ofb (obtained in Step 5 of previous

update), to obtain
�

�+
��

�
.

Step 3

�� applyR(R) to
�

�y

��

�
to get��� as 1st component,

�� employ the hyperbolic CORDIC mode and force to 0 the

2nd component of the vector
�

1
�+

�
to obtain ��+ as 1st

component.
Step 4

�� apply to the vector
�

��
0

�
the rotationR(R) to get as 2nd

component���� = ��+��+,



�� compute, in the linear mode, the encoding of1=��+ (non-
restoring division) and, simultaneously, apply this sign se-
quence to���� to get��+.

Step 5

�� rotate
�

��

��+��+

�
to force the 2nd component to 0 and

thus obtain the encoding (sign sequence) of the angleB to
be used as encoding of the “angle”b in Step 2 for the next
update,
�� apply in the linear mode the sign sequence encoding1=��+
both to��, to get�+, and to��, to get�+.

This decomposition in terms of 2-D CORDIC opera-
tions has the same complexity as the solution presented in
[4], [9], assuming that this older solution is modified to ben-
efit from the fact that the angles do not have to be computed
explicitly. It has however the advantage of having an under-
lying geometric interpretation. On one hand one may use
the relations introduced here, such as (6), and depart from
the geometrical interpretation in an attempt to simplify the
computations, especially those for�+ which, by symmetry,
could be made as simple as the computations for�+. On
the other hand our geometric viewpoint has probably not
been fully exploited here and we still have hope for a more
parallel computational scheme, operating on 3-D vectors.

The accuracyd needed for the computations will typi-
cally be about 16 or 20 bits.

A conceptually straightforward implementation of one
stage would use two PS-CORDIC (withoutz-part) working
in parallel to implement the 5 steps; a stage would therefore
take about5d iterations for a time update. Globally, the fil-
ter, which typically requiresn = 10 to 20 or more stages,
could be implemented as a pipeline of stages (hence taking
about5d iterations for the update of all the stages) or se-
quentially (computation time being then multiplied by the
ordern of the filter) or in any intermediate fashion.

An interesting alternative would use two PP-CORDIC
(without z-part) working in parallel. The data from the
stages would be pipelined so that Step 1 for all stages would
be computed first, followed by Step 2 for all stages, etc. The
depth of the pipeline would bed and the pipeline would pro-
cess5n sets of 4 input values per time update; if the ordern
exceeds the depth, the pipeline would take about5n+d cy-
cles to perform the time update, to be compared to the5d to
5dn cycles of the PS-CORDIC solutions above. Ifd=2 � n,
a one PP-CORDIC solution would take about10n+d cycles
to perform the time update.

6. Conclusions

We have implemented high throughput CORDICs for re-
configurable computing in our object-oriented hardware de-
sign environment – PAM-Blox – and synthesized generic
parallel CORDICs with Synopsys Design Compiler for min-

imal area, and minimal latency.
While commercial synthesis tools are very efficient in

optimizing CORDICs for ASICs, FPGAs do not seem to
lend themselves to these types of optimizations. At a higher
level, in order to give an idea of what is involved in the auto-
matic generation of CORDIC-like units for specific applica-
tions, we have decomposed the computations of an adaptive
filter in terms of CORDIC operations.
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