
Design Space Exploration with A Stream Compiler

Oskar Mencer, David J. Pearce, Lee W. Howes, Wayne Luk

Department of Computing, Imperial College, London, UK.

Abstract

We consider speeding up general-purpose applications with
hardware accelerators. Traditionally hardware accelera-
tors are tediously hand-crafted to achieve top performance.
ASC (A Stream Compiler) simplifies exploration of hard-
ware accelerators by transforming the hardware design task
into a software design process using only ’gcc’ and ’make’
to obtain a hardware netlist. ASC enables programmers to
customize hardware accelerators at three levels of abstrac-
tion: the architecture level, the functional block level, and
the bit level. All three customizations are based on one uni-
form representation: a single C++ program with custom
types and operators for each level of abstraction.

This representation allows ASC users to express and
reason about the design space, extract parallelism at each
level and quickly evaluate different design choices. In ad-
dition, since the user has full control over each gate-level
resource in the entire design, ASC accelerator performance
can always be equal to or better than hand-crafted designs,
usually with much less effort. We present several ASC bench-
marks, including wavelet compression and Kasumi encryp-
tion.

1. Introduction

Traditionally computer systems consist of a microprocessor
that pushes the limits of current technology, and an addi-
tional set of application or domain specific devices, or hard-
ware accelerators, that accelerate certain functionality. Ex-
amples are: floating point co-processors in early micropro-
cessor systems, 2D and 3D graphics accelerator cards, and
combinations of software and hardware accelerators in em-
bedded systems. However, all these hardware accelerators
are tediously hand-crafted to achieve top performance.

The ASC (A Stream Compiler) system has been devel-
oped to automate the design of hardware accelerators. Pre-
vious publications have covered the spirit [20] and the mod-
ule generation component [18] of our approach, together
with its use for floating-point unit generation [16]. This pa-
per explains how ASC can be used for design space explo-
ration. In particular, it describes:

• the ASC system, including the stream architecture
and the levels of abstractions,

Memory

CPU

Hardware 

Accelerators

Stream

Figure 1: A computer system with hardware accelerators
such as Stream Architectures.

• the hardware types and attributes for producing the
ASC datapath and memory systems,

• a number of benchmarks, including wavelet compres-
sion and Kasumi encryption, that illustrate the ASC
approach.

In the following, we provide an overview and motivations
for our work.

Figure 1 shows the general structure of a computer sys-
tem with multiple application specific accelerators. The ac-
celerator is located either on-chip with the processor such
as today’s floating point units, the Berkeley Garp Processor
[7], the Xilinx Virtex Pro FPGAs (Field Programmable Gate
Arrays) with on-chip PowerPC processors [27]; or such ac-
celerators are combined with main memory [14], or on the
peripheral bus[17][12]. These accelerators can be imple-
mented in custom VLSI devices, or as FPGA configura-
tions. Recent advances in FPGA technology enable the de-
velopment of many hardware accelerators customised for
specific applications and for particular input data-sets [19].
These accelerators can be generated and managed at com-
pile time and at run time.

Building efficient hardware accelerators for a particular
application, however, consists of many challenging tasks.
First, the programmer can explore four degrees of freedom:
the system architecture, the micro architecture, the func-
tional units, and the level of programmability or granular-
ity of configuration. This exploration results in the datapath
part of the design. Second, a control block for this datapath
needs to make sure that the timing of operations is correct.
Third, an interface between the accelerator and the proces-



sor should maximize the data transfer rate and minimize la-
tency. Fourth, a custom accelerator requires a custom mem-
ory system, consisting of on-chip registers, SRAM memory,
and possibly DRAM memory. Fifth, there should be run-
time routines to take care of sending the appropriate data
back and forth between the processor and the accelerator.

ASC facilitates design space exploration in two ways.
First, for the datapath, a single ASC description can be used
to produce multiple datapath implementations at the micro
architecture level with user-specified trade-offs. ASC also
simplifies the process of selecting and possibly custom de-
signing the functional units, by having descriptions in vari-
ous levels of abstractions captured in a uniform, object ori-
ented style.

Second, ASC automates the other tasks mentioned above,
including control block generation, run-time routine gener-
ation, and interface generation; our purpose is to put the
design space exploration under user control. By specifying
the algorithm in C++ syntax and ASC semantics, the user
also controls the memory system that ASC generates for the
application at hand.

2. ASC – A Stream Compiler
This section provides an introduction to ASC, and explains
how it can be used for design exploration. On the top level,
the user writes ASC code which closely resembles C code.
As such, existing C code can be used with some small modi-
fications to generate ASC hardware accelerators. In order to
express and explore the design space for a hardware accel-
erator, ASC code can be parameterized to generate a large
selection of implementations. With these parameterizations
the user can, for example, trade off silicon area for latency
and/or throughput. As such, ASC is a tool for expressing
and exploring the design space, rather than for providing
the optimal solution.

In essence, ASC is a C++ library and, as such, can be
compiled by a standard C++ compiler. Thus, ASC code
is simply C++ which makes use of the ASC library in a
compliant manner. When compiled, ASC code becomes an
executable which either acts as a bit-level (RTL) simulation
or produces a circuit in the form of a hardware netlist.

The concepts of timing and architecture of the circuit
can be expressed within the language constraints of C++ by
using ASC ”hardware types”, implemented as C++ classes,
and operators for these. These operators map to the mod-
ule generation environment called PAM-Blox II [18]. PAM-
Blox II is also implemented as a C++ class library. PAM-
Blox II is built on top of PamDC [3], a gate-level design
library implemented also as a C++ class library. At the gate
level, PamDC provides the engine for gate-level simulation
and creates a netlist in the EDIF format.

ASC facilitates design space exploration in the follow-
ing way. It provides three intermediate representations, all
in C++ syntax, to go from a software implementation all the

Algorithm Analysis

PAM−Blox II

Programmer

Architecture Generation

Hardware Netlist

Compaq/HP PamDC

extensions to PamDC

A Stream Compiler (ASC)

Module Generation

Figure 2: Levels of abstraction and structure of ASC. The
bold box represents a single C++ program.

way down to the gate-level without the use of a single line
of VHDL, Verilog, or IP libraries. Since each intermedi-
ate representation is human readable, it is possible to reason
about optimizations at each of these levels and explore such
optimizations within the ASC framework.

Conceptually, ASC follows the philosophy of the C pro-
gramming language. The objective is to offer the poten-
tial for maximal performance, and at the same time provide
a convenient language interface. The C language provides
variable types which correspond directly to the actual num-
ber representations supported by the underlying hardware –
the microprocessor. Examples for such C-style types are int,
long, float, and double.

On the hardware side, implementations are not limited
to any particular number representation or any particular bit
width. Custom hardware allows the programmer to tailor
the number representation to the specific application. In or-
der to simplify this process, the ASC description provides
hardware types and attributes which allow the user to se-
lect specific number representations. Types and attributes
provide a connection between the C++ description and the
architecture generation layer. Figure 2 shows the levels of
abstraction in ASC, described in more detail below.

• Algorithm analysis layer. Common tasks associated
with this layer include: extracting compiler-controlled
memory management [25][28], pointer analysis for
hardware synthesis [21], loop transformations for hard-
ware generation [7][10][26], precision analysis[4][6][24],
data-structure transformations, and architecture selec-
tion. For the sake of this paper this step is handled
manually, i.e. all algorithmic transformations are done
by the programmer. ASC’s task is to make this activ-
ity as easy as possible.



IN fifo

a

b

1

OUT fifo

+

Figure 3: A basic Stream Architecture

• Architecture generation layer. This layer is the main
focus of this paper. ASC code serves as the input to
generating the accelerators architecture.

• Module generation layer. In contrast to most other
efforts, ASC contains its own integrated module gen-
erator libraries, PAM-Blox II. PAM-Blox II offers the
ASC user easy exploration of bit level parallelism to-
gether with optimization on all the other levels. More
details on PAM-Blox II can be found in a previous
paper [18].

• Gate Level to Netlist layer. ASC does not utilize
any VHDL or Verilog and instead uses PamDC [3] for
gate level support, simulation, and EDIF generation.

In this paper we focus on a key step of design space
exploration: converting an architectural description, in our
case ASC code, to the gate level. How does an ASC de-
scription deal with timing, parallelization, and pipelining of
an algorithm? The big picture is that ASC contains an un-
derlying parametrizable and moldable architecture, called
the stream architecture. ASC extends the C++ type system
using user-defined classes as hooks to map the algorithm to
a particular instance of a stream architecture. In addition,
for each piece of code, ASC can be directed by the user to
optimize either throughput, latency or area. Since each of
these three optimization modes can be selected separately
for each expression in the ASC code, the user has the capa-
bility to optimize towards any objectives such as fiting into a
specific area with minimal latency, or maximal throughput.

A constructive way of visualizing stream architectures,
assuming a simple feed-forward dataflow graph of a loop
body, is to imagine taking the dataflow graph, inserting flip-
flops to generate a pipeline, and streaming data in at one
end while letting the data flow out on the other end of the
pipeline.

The following example shows C code for vector incre-
ment, ASC code, and the resulting stream architecture im-
plementation of that code:

in C (Software):

int i,a[SIZE],b[SIZE];
for (i=0; i<SIZE; i++){

b[i] = a[i] + 1;
}

The C loop above is expressed in ASC by declaring
an input stream (a), output stream (b), and, by specifying
the expression whose operator defines the function (add) to
compute the output stream, given the input stream.

ASC code:

STREAM_START;
// variables and bitwidths
HWint a(IN, 32),b(OUT, 32);

STREAM_LOOP(SIZE);
STREAM_OPTIMIZE = THROUGHPUT;
b = a + 1;

STREAM_END;

Note that the “for” loop in C code translates to a dec-
laration of STREAM_LOOP in ASC code, the variable type
changes to HWint, and the variables get “architectural at-
tributes” IN and OUT. From a vector processor perspective,
streams are a generalization of vectors. We express algo-
rithms in terms of streams (or arrays in C). ASC then gen-
erates a stream architecture based on STREAM_OPTIMIZE
for each expression. Currently supported optimization val-
ues are THROUGHPUT, LATENCY, and AREA. Finally, a
modified C program streams data through the hardware at
runtime to compute the results. The modification consists
of replacing the “for” loop above by a call to the ASC run-
time library, for the example above:

ascrt_stream_int(a,b,SIZE,SIZE);.

This call sends SIZE data items from buffer a to the
generated circuits, either in a gate level simulation mode or
real hardware, and receivesSIZE data items into buffer b
back. On the accelerator, the input data enters a first-in first-
out (fifo) buffer and flows through the stream architecture
until it arrives at the output fifo buffer. The above ASC code
results in the implementation shown in figure 3.

In general, an ASC architecture consists of a multi-input,
multi-output data flow graph. Each “wave” of input values
flows through this implementation of the dataflow graph.
An implementation of a data flow graph involves delay FIFO
buffers, which balance the movement of the various operands
through the compute engine. The delay inserted by each
buffer is set by the scheduling phase of ASC.

3. The ASC Datapath

This section describes the facilities that ASC provides to
support exploration of datapath and memory system designs.



3.1. Hardware Types and Attributes

ASC uses types and attributes to hook the programmers’
description of the algorithm to the architectural features of
the datapath of the stream architecture.

As mentioned before, ASC provides hardware types and
attributes which the programmer uses to specify number
representations. Each hardware type denotes a family of
related representations. For example, HWint denotes the
integer family of representations. In addition, the user spec-
ifies attributes to select more specific details such as sign
representation (e.g. two’s complement or sign magnitude),
bit width, or memory type (e.g. register, temporary, stream
input, or FPGA internal memory block). These Attributes
are parameters stored within the state of the hardware vari-
able class. Available data types are: HWint, HWfix, and
HWfloat.

3.2. ASC “Instructions”: Module Generator Libraries

PAM-Blox II [18] consists of more than 170 integer arith-
metic module generators for elementary operations in about
10K lines of C++ code, resulting in an average of less than
60 lines of code per module generator.

ASC arithmetic unit generators include flip-flops, and
thus timing, in the generated unit. For all operations the user
chooses an appropriate implementation by selecting one of
three optimization modes: latency, area, or throughput. As
a consequence ASC chooses the appropriate module for the
particular optimization: a plain combinational arithmetic
unit for latency minimization, a sequential arithmetic unit
for area minimization, and a fully pipelined arithmetic unit
for throughput maximization.

ASC also contains floating point module generators [16]
capable of generating over 200 distinct floating point units.
The generated floating point units differ in their algorithm,
architecture, and timing (pipelining), and thus represent over
200 design points in the area, latency, and throughput design
space. In addition, each of these floating point units can be
generated with a variable number of bits for the mantissa
and the exponent. Furthermore our arithmetic unit gen-
erators enable a trade-off of precision versus area by en-
abling the user to choose custom rounding and normalizing
schemes.

3.3. The ASC Memory Systems

One key advantage of having flexibility at the bit level is that
we can generate an application specific memory system all
the way down to the bit level. The elements for this mem-
ory system are: flip-flops and registers, FIFO buffers, small,
multi-ported, on-chip SRAM blocks, large on-chip SRAM
blocks, off-chip SRAM memory, and off-chip DRAM mem-
ory.

ASC does not automatically generate the optimal mem-
ory system. Instead ASC provides a notation to express
application-specific memory systems, in order to enable the
exploration of and reasoning about memory system opti-
mizations. As before, we utilize types and especially “archi-
tectural attributes” to assign algorithmic variables to the var-
ious physical components of the generated memory system.
Thus, ASC variables can be TMP variables as described be-
fore, or INTMEM or EXTMEM for FPGA internal block-
ram memories and FPGA external memories. For multi-
ple external memories ASC provides attributes EXTMEM0,
EXTMEM1, etc.

4. Benchmarks

In this section, three benchmarks – wavelet compression,
Kasumi encryption, and rotation and elementary functions
– are used to illustrate and to evaluate our approach. They
demonstrate three main kinds of design space exploration:
loops (architecture level), the arithmetic unit level, and the
bit level.

4.1. Wavelet Compression

The first benchmark we evaluate is Wavelet Compression
based on a piece of code from a wavelet library [9]. The
code is implemented using HWfix variables of 20 bits with
the binary point after the 14th fractional bit. The declara-
tions of the variables shows the usage of default values for
variable attributes such as sign-mode and bitwidth, and the
HWvector declaration which mirrors the functionality of
vector in the C++ standard template library.

DefaultSign = TWOSCOMPLEMENT;
DefaultSize = 20;
DefaultFract = 14;

HWfix in1(IN),in2(IN),
out1(OUT),out2(OUT);

HWfix low,high,temp,temp2,coefficient;

HWvector<HWfix> v_temp1(4, new HWfix(TMP));
HWvector<HWfix> v_temp2(5, new HWfix(TMP));
HWvector<HWfix> lcoeff1(4, new HWfix(TMP));
HWvector<HWfix> lcoeff2(5, new HWfix(TMP));
HWvector<HWfix> hcoeff1(4, new HWfix(TMP));
HWvector<HWfix> hcoeff2(5, new HWfix(TMP));

The algorithm consists of two loops, one after the other.
Each loop can be unrolled in hardware, or ASC can gen-
erate an actual feedback loop in the hardware. ASC pro-
vides two main loop constructs LOOP and UNROLL_LOOP,
which explicitly create a feedback connection or unroll the
loop body. The following piece of ASC code shows how the
user can explore the design space for loops in ASC:



#ifndef UNROLL1
HWint idx1(TMP,5);
idx1=0;
LOOP(size1_2);

#else
int idx1=0;
UNROLL_LOOP(int i=0;i<size1_2;i++){

#endif

temp2 = v_temp1[idx1<<1];

coefficient = IF(idx1,
lcoeff1[3],
lcoeff1[1]);

low = low+(coefficient*temp2);

coefficient = IF(idx1,
hcoeff1[3],
hcoeff1[1]);

high = high+(coefficient*temp2);
temp2 = v_temp1[(idx1<<1) + 1];

coefficient = IF(idx1,
lcoeff1[2],
lcoeff1[0]);

low = low+(coefficient*temp2);

coefficient = IF(idx1,
hcoeff1[2],
hcoeff1[0]);

high = high+(coefficient*temp2);

idx1++;
#ifndef UNROLL1

LOOP_END();
#else

}
#endif

Notice that in the case of unrolling, the loop index vari-
able is an integer. In the case of a loop in hardware, the in-
dex variable is a HWint. A major consequence of unrolling
is that all array indexing can be done at compile time, thus
saving a lot of area for dynamic array accessing. Also, all
arithmetic involving the integer idx1 can now be imple-
mented as constant arithmetic, i.e. PAM-Blox modules for
constant multipliers and adders, etc.

In case of a dynamic loop in hardware, ASC generates
array indexing hardware, which is basically a multiplexor-
tree. This tree can be implemented in Xilinx FPGAs either
by using tristate buffers and a bus, or by a tree of lookup
tables. In general, the tree of lookup tables is faster, but re-
quires precious FPGA resources. The ASC user can control
tristate usage by setting FASTINDEX to true or false within
the program. In addition, ASC knows from experience that

Figure 4: Results for the Wavelet design space exploration
showing the best performers for each of the three FPGA
sizes. The size of the circle indicates the area of the design.

designs with too many tristate buffers have a problem rout-
ing with current tools, so it will limit the number of tristate
buffers to half the number of tristate buffers that are avail-
able on the particular FPGA.

4.2. Kasumi Encryption

The second application we examine is Kasumi encryption
[13] which is part of the 3G standard for wireless commu-
nication.

Key opportunities for exploring parallelism at the bit
level are in the FL() and FO() function calls (S-boxes),
which are implemented as table lookups in the software
version. In the standard specification these are provided
as both lookup tables and logic functions. When creating
application-specific hardware, we convert these tables into
boolean equations which can be minimized with a logic
minimization algorithm. Given enough symmetries in these
tables, the resulting circuit can be made smaller and faster
than the corresponding hardware tables. Two bits of one
S-box are defined as:

y0 = x1x3 ⊕ x4 ⊕ x0x1x4 ⊕ x5⊕
x2x5 ⊕ x3x4x5 ⊕ x6 ⊕ x0x6 ⊕ x1x6⊕
x3x6 ⊕ x2x4x6 ⊕ x1x5x6 ⊕ x4x5x6

y1 = x0x1 ⊕ x0x4 ⊕ x2x4 ⊕ x5 ⊕ x1x2x5⊕
x0x3x5 ⊕ x6 ⊕ x0x2x6 ⊕ x3x6 ⊕ x4x5x6 ⊕ 1

ASC allows the user to exploit bit-level parallelism by cre-
ating custom PAM-Blox modules at the bit level. The user
creates modules by extending the PAM-Blox class library
with a new module (sub-class) and creating a function call
that access that particular new module from the ASC code
level, as shown in the code below.



Figure 5: Kasumi design space exploration with ASC.

void
kasumi(Kstate *ks, HWvector<HWint> &data){

HWint &l(*new HWint(TMP,32,UNSIGNED));
HWint &r(*new HWint(TMP,32,UNSIGNED));
HWint &t1(*new HWint(TMP,32,UNSIGNED));
HWint &t2(*new HWint(TMP,32,UNSIGNED));
l = data[0];
r = data[1];

#if USE_LOOP
HWint i(TMP,6,UNSIGNED);
i=0;
STREAM_OPTIMIZE=AREA;
LOOP(4);

#else
unsigned int i;
UNROLL_LOOP(i=0;i<8;) {

#endif

t1 = FL(ks, l, i);
r ˆ= FO(ks, t1, i);
t2 = FO(ks, r, i+1);
l ˆ= FL(ks, t2, i+1);
i=i+2;

#if USE_LOOP
LOOP_END();

#else
}

#endif

data[0] = l;
data[1] = r;

}

Our implementation of the FL() and FO() functions
has a user configurable parameter to indicate whether the
circuit should use a lookup table (held in on-chip SRAM
such as Xilinx block RAMs) or a direct implementation of
the above. Thus, when porting the code the user can de-
cide to use available block RAMs to save area or create the
custom logic to achieve maximal performance.

Figure 6: Rotation example, exploration of design space.

4.3. Rotation and Elementary Functions

The third application is that of elementary functions, such
as sine and cosine, and their use in a coordinate rotation
unit. We use polynomial approximations to generate sine
and cosines. The coordinate rotation performs a pair of 2D
rotations through input angles written to memory-mapped
registers. The coordinates are then streamed in, and the ro-
tated coordinates streamed out.

Use of Default variables and STREAM_OPTIMIZE
enables exploration of the design space. Changing these
options alters the size of hardware variables or the optimiza-
tion mode of the logic blocks; this creates a widely differing
range of hardware implementations to test.

The code below is the rotation function, demonstrating
how the Default and STREAM_OPTIMIZE variables can
be used to explore the design space for the FPGA:

STREAM_START;
DefaultSign=SIGNMAGNITUDE;
// THROUGHPUT, LATENCY or AREA
STREAM_OPTIMIZE = THROUGHPUT;
DefaultSize = 26;
DefaultFract = 21;
HWfix x(IN),y(IN),z(IN);
HWfix outx(OUT),outy(OUT),outz(OUT);
HWfix phi(MAPPED_REGISTER);
HWfix delta(MAPPED_REGISTER);
HWfix cosP(TMP),cosD(TMP);
HWfix sinP(TMP),sinD(TMP);

STREAM_LOOP(10);

cosP = cos(phi);
cosD = cos(delta);
sinD = sin(delta);
sinP = sin(phi);
outx = x*cosD-z*sinD;
outy = y*cosP+x*sinP*sinD+z*sinP*cosD;
outz = x*sinD*cosP-y*sinP+z*cosD*cosP;
STREAM_END;



Figure 7: Bitwidth / Throughput tradeoff.

5. Results
Results are obtained with ASC v0.4, gcc v2.95, and cur-
rent Xilinx tools. We simulate the implementations on the
gate-level by compiling ASC code with gcc and running the
program in simulation mode. Gate level simulation is pro-
vided by PamDC. Since ASC can target any FPGA board,
the reported results show FPGA peak performance without
taking into account board level bottlenecks.

The bubble chart in figure 4 shows the design space
for the wavelet compression example. We explore latency,
throughput, and FPGA area, which is shown as the size
of the bubbles. The tradeoffs between the various imple-
mentations are based on different loop unrolling decisions.
The smallest design has no unrolling, the middle one un-
rolls once and the large implementation is fully unrolled for
maximal throughput. Figure 5 shows the results of design
space exploration for Kasumi encryption using ASC.

The third set of results shows the design space for the
rotation example. Just as for the previous two examples, a
bubble chart in figure 6 shows the design space. In addition,
figure 8 and figure 7 show the design space tradeoff when
varying the bitwidth of the variables. The graphs show the
impact of optimizing latency, throughput or area across dif-
ferent bitwidths.

6. Related Work
The key benefit of ASC as compared to the C-to-FPGA
approaches below is that ASC enables the programmer to
generate optimal circuits by programming on the bit level,
while at the same time making it easy to explore a large de-
sign space and program non-critical parts of the applications
on a very high level.

The DEFACTO system [23] supports hardware design
space exploration based on parallelizing compiler technol-
ogy and high-level synthesis tools. A key element in DE-
FACTO is the use of synthesis estimation techniques, possi-
bly from behavioural synthesis tools [22], to quantitatively
evaluate alternative designs for a loop nest computation.
Other researchers have also proposed estimation-based ex-
ploration methods, such as the heuristics-based allocation

Figure 8: Bitwidth / Latency tradeoff.

based on communication cost reduction [5]. In contrast,
ASC operates on a lower level, and could be targeted by
a DEFACTO-style layer.

The Nimble framework [15] extracts loops from appli-
cations and generates a hardware accelerator for an FPGA.
Similar to DEFACTO, much of Nimble is actually above
the ASC level, as its main focus is on hardware/software
partitioning. As a consequence, Nimble is limited to high
level transformations, particularly those exploring architec-
tural and instruction level parallelism. The focus with ASC
is to bring all relevant levels of abstraction together in a co-
herent framework, from bit level to algorithm level.

The Stream-C [10] and MARGE [11] systems compile
C code to multi-FPGA hardware accelerators. Similar to
Nimble above, Stream-C operates mostly at a higher level
than ASC. However, Stream-C is more hands-on than Nim-
ble, requiring user programming to explore the design space.
Stream-C follows the traditional behavioral synthesis ap-
proach of adding annotations with compiler directives to the
code, rather than including design parameters into the lan-
guage such as the type system in ASC.

Celoxica [8] provides Handel-C, a C derivative language
for high level hardware design. Handel-C can be used to
design hardware accelerators for FPGAs at a similar level as
ASC. Like ASC, Handel-C provides the hardware designer
with control and opportunities for optimization. The main
difference from ASC is that the entire compiler code and
most module libraries are proprietary and thus off limits to
the user.

Similar efforts also exist in the custom VLSI world. For
example, ShiftQ [2], the nonprogrammableaccelerator (NPA)
for Program-In-Computer-Out [1] (PICO) systems, enables
the user to quickly find an optimum hardware solution.

7. Conclusions

ASC enables the exploration of area, latency, and through-
put trade-offs for hardware design, and accelerator genera-
tion especially. Moreover, ASC is a platform for tools that
automate the exploration of the space-time design space. In
particular, since the entire source code is available, ASC



enables research of the space-time design space at the ar-
chitecture level, the functional unit level, and the bit level.

Our experience shows that ASC simplifies hardware de-
sign: in fact most of the ASC application code presented
in this paper is developed by C++ programmers after read-
ing the ASC manual. Current and future research on ASC
includes automating some of the tasks in the algorithm anal-
ysis layer (Figure 2), and evaluating our approach using fur-
ther benchmarks.

8. Acknowledgements

We thank Paul Kelly, Miron Abramovici, Cliff Young, Mar-
tin Morf, and Michael J. Flynn, for discussions and support
of ASC efforts. Jian Liang, Gary Huang, and Henry Styles
helped to advance ASC and wrote some of the code exam-
ples. The support of the UK Engineering and Physical Sci-
ences Research Council (Contract GR/R 55931) and Xilinx
Inc. is gratefully acknowledged.

9. References

[1] S.G. Abraham, B.R. Rau, Efficient design space exploration
in PICO, Proc. CASES, International Conference on Com-
pilers, Architecture and Synthesis for Embedded Systems,
San Jose, California, Nov. 2000.

[2] S. Aditya, M. S. Schlansker, ShiftQ: A bufferred intercon-
nect for custom loop accelerators, Proc. CASES, Interna-
tional Conference on Compilers, Architecture and Synthesis
for Embedded Systems, Atlanta, Georgia, Nov. 2001.

[3] P. Bertin, D. Roncin, J. Vuillemin, Programmable Ac-
tive Memories: A Performance Assessment, ACM FPGA,
February 1992.

[4] K. Bondalapati, V.K. Prasanna, Dynamic Precision Man-
agement for Loop Computations on Reconfigurable Archi-
tectures, In IEEE Symposium on FPGAs for Custom Com-
puting Machines, April 1999.

[5] L. Bossuet, G. Gogniat, J.-L. Philippe, Fast Design Space
Exploration Method for Reconfigurable Architectures, Proc.
International Conference on Engineering of Reconfigurable
Systems and Algorithms, 2003.

[6] M. Budiu, S. C. Goldstein, K. Walker, M. Sakr, BitValue
Inference: Detecting and Exploiting Narrow Bitwidth Com-
putations, Europar Conf., Munich, Germany, Aug. 2000.

[7] T. J. Callahan, J. R. Hauser, J. Wawrzynek, The Garp Ar-
chitecture and C Compiler., IEEE Computer, April 2000.

[8] Celoxica, Handel-C Language Reference Manual,
http://www.celoxica.com/

[9] G. Davis, J. Danskin, R. Heasman, Wavelet Im-
age Compression Construction Kit, Version 0.3,
http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html

[10] J. Frigo, M. Gokhale, D. Lavenier, Evaluation of the
Streams-C C-to-FPGA Compiler: An Applications Perspec-
tive., IEEE FPGA Conference, Monterey, CA, Feb. 2001.

[11] M. Gokhale, J. Kaba, A. Marks, J. Kim, Malleable architec-
ture generator for FPGA computing, Reconfigurable Logic,
Proc. SPIE 2914, Bellingham, WA, Oct. 1996.

[12] S. D. Haynes, P.Y.K. Cheung, W. Luk, J. Stone, Video Im-
age Processing with the SONIC Architecture, IEEE Com-
puter, April 2000, pp 50 - 57.

[13] Kasumi Encryption Algorithm, 3G Wireless standard,
http://www.3gpp.org/

[14] P. H. W. Leong, M. P. Leong, O. Y. H. Cheung, T. Tung,
C. M. Kwok, M. Y. Wong, K. H. Lee, Pilchard - A Recon-
figurable Computing Platform with Memory Slot Interface,
Proc. IEEE Symp. on FPGAs for Custom Computing Ma-
chines, Apr. 2001.

[15] Y. Li, et. al., Hardware-software co-design of embedded
reconfigurable architectures, Design Automation Confer-
ence, 2000.

[16] J. Liang, R. Tessier, O. Mencer, Floating Point Unit Gen-
eration and Evaluation for FPGAs Proc. IEEE Symp. on
FPGAs for Custom Computing Machines, Apr. 2003.

[17] M. Macedonia, The Computer Graphics War Heats Up,
IEEE Computer Magazine, October 2002.

[18] O. Mencer, PAM-Blox II: Design and Evaluation of C++
Module Generation for Computing with FPGAs, Proc.
IEEE Symp. on FPGAs for Custom Computing Machines,
Apr. 2002.

[19] O. Mencer, W. Luk Tutorial: Computing with FPGAs, In-
ternational Symposium on Computer Architecture (ISCA),
Anchorage, May 2002.

[20] O. Mencer, M. Platzner, M. Morf, M. Flynn, Object-
oriented Domain-Specific Compilers for Programming FP-
GAs, IEEE Transactions on VLSI, special issue on Recon-
figurable Computing, Feb. 2001.

[21] L. Semeria and G. De Micheli, Resolution, Optimization,
and Encoding of Pointer Variables for the Behavioral Syn-
thesis from C, IEEE Transactions on Computer-Aided De-
sign, February 2001.

[22] B. So, P. Diniz, M. Hall, Using Estimates from Behavioral
Synthesis Tools in Compiler-Directed Design Space Explo-
ration, Proc. ACM/IEEE 40th Design Automation Confer-
ence, June 2003.

[23] B. So, M. Hall, P. Diniz, A Compiler Approach to Fast
Design Space Exploration in FPGA-based Systems, Proc.
ACM Conference on Programming Language Design and
Implementation (PLDI’2002), ACM Press, June 2002.

[24] M. Stephenson, J. Babb, S. Amarasinghe, Bitwidth Analysis
with Application to Silicon Compilation, Proc. of the ACM
Conf. on Programming Language Design and Implementa-
tion, Vancouver, BC, June 2000.

[25] O.S. Unsal, I. Koren, C. M. Krishna, C. A. Moritz, Cool-
Cache for Hot Multimedia, MICRO-34 Conference, Austin,
Texas, Dec, 2001.

[26] M. Weinhardt, W. Luk, Pipeline Vectorisation, IEEE Trans-
actions on Computer-Aided Design, February 2001.

[27] Xilinx, Virtex-E and Virtex II Pro FPGA Datasheet,
http://www.xilinx.com/

[28] L. Zhang, et. al., The Impulse Memory Controller, IEEE
Trans. on Computers, Nov. 2001.


