
Floating Point Unit Generation and Evaluation for FPGAs

Jian Liang and Russell Tessier
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA. 01003.

Oskar Mencer
Computer Sciences Center

Bell Labs, Lucent
Murray Hill, N.J. 07974

Abstract

Floating point units form an important component of
many reconfigurable computing applications. The creation
of floating point units under a collection of area, latency,
and throughput constraints is an important consideration
for system designers. Given the range of possible tradeoffs,
most commercial or academic floating point libraries for
FPGAs provide a small fraction of possible floating point
units. In contrast, the floating unit generation approach out-
lined in this paper allows for the creation of more than 200
different floating point units, with differing area, through-
put, and latency characteristics. These variations are sup-
ported through selection of a floating point architecture and
the use of floating point unit pipelining. Each of these float-
ing point units can be generated with a variable number of
bits for the mantissa and the exponent.

Given requirements on throughput, area and latency, our
generation flow automatically chooses the proper algorithm
and architecture to create a floating point unit which fulfills
design requirements. Our approach is fully integrated into
standard C++ using ASC, a stream compiler for FPGAs,
and the underlying PAM-Blox II module generation envi-
ronment [13]. The floating point units created by our ap-
proach are competitive in size and performance with ones
created by commercial vendors.

1 Introduction

With gate counts approaching ten million gates, FPGAs
are quickly becoming suitable for major floating point com-
putations. However, to date, few comprehensive tools to
allow for floating point unit tradeoffs have been developed.
Most commercial or academic floating point libraries pro-
vide only a small number of floating point modules with
fixed parameters of bit-width, area, and speed. With this
limitation, user designs must be modified to meet the avail-
able units.

The balance between FPGA floating point unit resources

and performance is influenced by subtle context and design
requirements. Generally, implementation requirements are
influenced by throughput, latency and area.

1. FPGAs are often used in place of software due to inher-
ent parallelism and specialization. For data-intensive
applications, data throughput is critical.

2. If floating point computation is in a dependent loop,
computation latency could be an overall performance
bottleneck.

3. In typical FPGA designs, only a few floating point
units will be on the critical path. For these non-critical
units, it may be possible to limit unit performance in
an effort to reduce resource area.

Although bitwidth variation provides some flexibility,
this parameter alone cannot address all possible tradeoffs.

The VLSI design community has developed a variety of
floating point algorithms, architectures, and pipelining ap-
proaches. For example, a two-path floating point adder [6]
was introduced to trade area for latency and other architec-
tures [1, 18, 3] were designed to reduce critical path delay.
With modification, these techniques can be applied to FP-
GAs. To better evaluate the floating point unit design space
on FPGAs, we have developed a floating point unit gener-
ator which can generates more than 200 different floating
point adders, subtractors, multipliers and dividers. Three
trade-off levels can be explored: the architectural level, the
floating point algorithm level, and the floating point rep-
resentation level. Each of these require examination of
FPGA-specific features and techniques including:

1. Different floating point units can be built by using
various combinations of carry chains, LUTs, tri-state
buffers and flip flops to obtain different area, latency,
and throughput values. These features lead to parallel
and serial versions of units.

2. The implementation of a variety of well-known float-
ing point algorithms can be considered. These include

1

standard 3-stage floating point addition [17], two-path
addition [6], Leading-One-Detection (LOD) [18], and
Leading-One-Prediction (LOP) [3].

3. The floating point representations can be customized
by using different sign modes for both mantissa and
exponent. Each generated floating point unit can
also contain a mantissa and exponent with custom bit
widths.

Our floating point unit generation tool is integrated into
ASC [15], and a friendly and fully automatic design flow.

Section 2 provides background on floating point unit de-
sign and shows the trade-offs of floating point computation
on FPGAs. The design flow and the algorithms are intro-
duced in Section 4. The area and performance of different
trade-off options are presented in Section 5. The application
of our generator on a Wavelet filter is presented in Section
6. We summarize the paper in Section 7.

2 Background

2.1 Floating Point Representation

Standard floating point numbers are represented using an
exponent and a mantissa in the following format:

�
sign � bit � mantissa � baseexponent � bias

The mantissa is a binary, positive fixed-point value. Gen-
erally, the decimal point is located after the first bit, m0, as
mantissa ��� m0 � m1m2 �	�
�mn � , where the mi is the ith bit of
the mantissa. The floating point number is “normalized”
when m0 is one.

The exponent combined with a bias sets the range of rep-
resentable values. The common value for the bias is � 2k � 1,
where k is the bit width of the exponent.

The base of the representation sets the granularity of
shifting and rounding. In the IEEE754 standard [9], the
base is two. Other units use a larger number to reduce the
latency of the shift operation, which is a critical part of most
floating point arithmetic units. For example, 24 is chosen in
the IBM S/370 [23].

The IEEE standard floating point representation makes
floating point unit implementation portable and the preci-
sion of the results predictable. However, application spe-
cific circuits are not required to use a uniform representa-
tion of numbers at the bit level. Adapting the floating point
representation of the algorithm, architecture, and bit-level
offers significant potential for optimization.

2.2 Floating Point Implementations in FPGAs

A few efforts have made to build floating point units us-
ing FPGAs. Several bit-width-scalable floating point arith-

metic architectures [12, 11, 21] have been evaluated. Fagin
and Renard [5] implemented a floating point adder and mul-
tiplier that met IEEE754 [9] floating point standards. Most
commercial floating point libraries provide units that com-
ply with the IEEE754 standard [4, 16]. Luk [7] showed
that in order to cover the same dynamic range, a fixed point
design must be five times larger and 40% slower than the
floating point design. A floating point library containing
units with parameterized bit width units was described in
[2]. In this library, the mantissa and exponent bit width can
be customized. This library also includes a converter which
can convert between fixed point numbers to floating point
numbers. In [10], a floating point library with variable bit
width units is presented. A square root unit has been in-
cluded in this library. The floating point units are arranged
in fixed pipeline stages.

2.3 Floating Point Algorithms

Although the multiplication and division of floating
point numbers are straightforward with respect to their cor-
responding fixed point units, addition and subtraction are
significantly more complex operations in the floating point
domain. Three floating point add/sub algorithms are briefly
introduced in this section: standard [17], 2-path [6] and
leading-one predictor (LOP) [3]. Since floating point addi-
tion is substantially more difficult than floating point multi-
plication we concentrate our discussion on addition.

The standard pipelined floating point addition algorithm
[17] consists of five steps:

1. Exponent difference

2. (Pre) Shift for mantissa alignment

3. Mantissa add/subtraction

4. (Post) Shift for normalization

5. Rounding

The implementation of these steps defines the area, la-
tency, and performance of the floating point unit. To illus-
trate comparisons, we consider the block diagrams of the
floating point adders shown in Figure 1.

The area-efficient standard floating adder is implemented
as shown in Fig.1(a). The exponents of the two input
operands, exponentA and exponentB are fed into the expo-
nent comparator. In the pre-shifter, a new mantissa is cre-
ated by right shifting the smaller exponent by the differ-
ence of the exponents so that the resulting two mantissas
are aligned and can be added. An overflow will result when
both mantissas have ones as most significant bits. In this
case, the resulting mantissa will be shifted one bit to the
right and the exponent will be decreased by one.

2

Far PathClose Path
Comparator
Exponent

LOD

SUB Shifter

Comparator
Exponent

Comparator
Exponent

>1?

correction
exponent possible

1−bit Shifter

Shifter
Pre

ExponentBExponentA MantissaA MantissaB

Exponent
Difference

Larger Exponent

Adder

sum

Shifted
Mantissas

Normalizer

Result MantissaResult Exponent

(a) Standard Algorithm

Shifter
Pre

ExponentBExponentA MantissaA MantissaB

Exponent
Difference

Larger Exponent

Adder

sum

Shifted
Mantissas

LOP

SUB Shifter

Result Exponent Result Mantissa

Normalizer

(b) Using LOP

Shifter
Pre

ExponentBExponentA MantissaA MantissaB

Adder

Shifted
Mantissas

1−bit shifter
Possible

Shifted
Mantissas

Adder

sum

LOD

SUBShifter

Larger Exponent

Exponent

Difference

Result Mantissa & Exponent

Mantissa & Exponent

sum

(c) two−path

Normalizer
Mantissa & Exponent

0 1

Figure 1. Floating Point Addition Algorithms

The normalizer transforms the mantissa and exponent
into normalized format. It first uses a Leading-One-
Detector (LOD) circuit to locate the position of the most
significant one in the mantissa. Based on the position of
the leading one, this resulting mantissa is left-shifted by an
amount subsequently deducted from the exponent.

In this algorithm, the exponent comparator is a subtractor
and multiplexer. It requires about 2 � n LUTs, where n is the
exponent bit width. The pre-shifter is implemented using a
barrel shifter and its size is about m � log

�
m � LUTs, where

m is the bit width of the mantissa. The size of mantissa
adder depends on the architecture and sign mode. Using a
ripple adder for the unsigned mantissa, it is about m LUTs.
In the normalizer, the LOD is nearly the same size as the
mantissa adder. The shifter is equal to the pre-shifter and
the SUB is about the same size as the exponent comparator.
Overall, the size of the normalizer is about the size of the
sum of the other three components.

Figure 1(b) shows the floating point adder using the
Leading-One-Predictor (LOP) [8, 20, 22]. This floating
point adder implementation requires larger area than the
standard adder but exhibits improved latency. The primary
difference is the replacement of the leading-one detector
(LOD) with a leading-one predictor (LOP). Since the LOP
circuit can be executed in parallel with mantissa addition,
overall latency can be reduced.

The two-path adder [6], shown in Fig.1(c), has two par-
allel data paths. This implementation exhibits the small-
est latency of the three adders, due to the elimination of a
shifter from the critical path, at the cost of additional map-
ping area. When the exponents of the two input numbers
are larger than 1, the far path, on the right in Fig.1(c), is

taken. Otherwise, the close path on the left is taken. After
the alignment, one of the mantissas will be reduced and the
position of the leading one will change at most one bit. This
implementation eliminates the long shifter of the normal-
izer. In the close path, the mantissa will be shifted at most
one bit for alignment. A long shifter is not necessary either.
In Fig.1(c), the shaded blocks indicate the different compo-
nents to the standard algorithm. The 2-path algorithm uses
two data paths which almost doubles area usage.

3 FPGA Floating Point Tradeoffs

In this section, floating point unit implementation trade-
offs using FPGA architectural features are evaluated. Some
floating point unit parameters (sign mode, normalization,
and rounding) offer special opportunities for area and la-
tency reduction.

3.1 Standard Floating Point Adder

The exponent comparator of the adder shown in Fig. 1(a)
is a subtractor. The pre-shifter is implemented using a barrel
shifter. The normalizer requires a second shifter to move
the resulting number into normalized format. The mantissa
adder forms the kernel of this unit.

A ripple adder using an FPGA carry chain (e.g. Virtex)
is an efficient mantissa adder implementation. Alternately,
a serial adder can be used to minimize area.

3

S1S0

I3

I2

I1

I0

D3

D2

D1

D0

MUX

MUX

MUX

MUX

MUX

Figure 2. Barrel Shifter

A n

B n
Cout
Cin

nO

B
A

A
B

i−1

i−1

i

i

B n−1
A n−1
B n−1
A n−1
B n−2
A n−2 Cout

Cin
1O

Overflow

Cout
Cin

0O LUT
Cin

Cout

1

0

F

FF

O i

A
B n

n

Figure 3. Mapping LOP into Virtex CLB

3.1.1 2-Path Floating Point Adder

As mentioned in Section 2, 2-path [6] and LOP [8] adder
implementations shorten the critical path of floating point
adders by requiring extra shifter logic. Fig. 2 shows a 4-
bit barrel shifter implementation where the I0 � 1 � 2 � 3 are the
input bits, D0 � 1 � 2 � 3 are the output bits and the S0 � 1 are the
shift index. In Virtex FPGAs, each multiplexer bit occupies
a 4-input LUT. In the case of a 32-bit shifter, shifting will
require 5 LUT delays.

3.2 LOP Floating Point Adder

This algorithm [3] requires use of the leading-one pre-
dictor. A subtractor can be used because the leading one
position in addition can be determined from the larger
operand. Fig. 3 shows the implementation of a LOP unit
in a Virtex CLB. Ai and Ai � 1 are two consecutive bits of
the minuend, and the Bi and Bi � 1 are consecutive bits of the
subtrahend. The required LUT function is

F � �
Ai

�
Bi � & �

Ai � 1&Bi � 1 �

This implementation requires an output ripple from the
most significant bit to the least significant bit. Using the
carry chain for this function, the LOP has nearly the same
delay as the mantissa adder.

I0 D0

I3

I2

I1

D3

D2

D1

Se0 Se1 Se2 S3e

Figure 4. Tri-state Buffer Shifter

3.3 Pipelining

The pipelining of the floating point adders can be
changed to realize area and throughput tradeoffs. Removing
registers results in a shorter pipeline and lower throughput,
but simpler overall control circuitry.

All components were carefully hand-pipelined at the
block level. For all three adders, the exponent compara-
tor requires one stage, the pre-shifter requires log

�
bitwidth �

stages, the mantissa add/sub unit requires one stage, the
LOP/LOD requires one stage, and the normalizer requires
log

�
bitwidth � stages. The log

�
bitwidth � stages of the pre-

shifter and the normalizer shown in Fig. 2 require a pipeline
register after every multiplexer. The number of pipeline
stages per unit can be tuned in our generator through the
use of input parameters.

3.4 Tri-state Buffer Usage

Tri-state buffers can used instead of LUTs to efficiently
build long shifters. As shown in Fig. 4, a tri-state
buffer shifter has approximately constant delay. When fully
pipelined, the tri-state buffer has only one stage, compared
with the log

�
bitwidth � stages of the barrel shifter. The avail-

ability of tri-state buffers are generally limited in contempo-
rary FPGAs.

3.5 Floating Point Improvements

FPGA specialization allows for potential tradeoffs in
floating point unit sign mode, normalization, and rounding
implementation. These tradeoffs are in addition to bitwidth
tradeoffs commonly found in floating point libraries.

4

1 0

...
’1’

...

...

Mantissa
Adder

Overflow

A B

Normalized Output

>>1

Result

Figure 5. Normalization of Unsigned Adder

3.5.1 Sign Mode

The IEEE754 standard requires that floating point numbers
be in sign-magnitude format. However, if operations can
be limited to unsigned numbers, floating point adder im-
plementation can be made smaller and faster. The result
of unsigned addition is always positive and larger than ei-
ther input number. Functionally, a normalizing post shifter
needs only right shifters. To normalize the result, at most
1-bit right shifting is required. A multiplexer is used to re-
place the LOP and normalizer in the unsigned adder. The
architecture after the mantissa addition is shown in Figure
5. The overflow bit of the mantissa is used to control the
multiplexer. If the mantissa overflows, the result is right
shifted by 1-bit and a 1 is shifted into the most significant
bit.

3.5.2 Normalizer

In standard floating point units, output data must be in nor-
malized format. This requirement maintains floating point
number precision. Some operators require normalized input
data to work properly. On FPGAs, output precision depends
on operator bitwidth. When all operator output data bits are
maintained, precision-based normalizing is unnecessary. In
this case, the normalizer can be skipped to speed up cir-
cuit operation and to save resources. For LOP and 2-path
adders, the LOD/LOP can also be eliminated.

3.5.3 Rounding

Five options are provided by our generator for rounding:
(1) IEEE754 default, (2) biased round-to-near, (3) random
rounding, (4) global random rounding, and (5) truncation.
The IEEE754 default rounding scheme [9] rounds up re-
mainders that are greater than or equal than 0.5. The round-
ing unit consists of an adder and a wide OR gate. The bi-
ased round-to-near approach rounds up when the remainder
is greater than 0.5 and eliminates the wide OR. Random
rounding algorithms provide random up/down rounding to

increase the numerical stability of some algorithms [15, 19].
A random bit generator is required for this implementation.
In global random rounding, a global random bit generator
provides the random bit for all FPGA rounding operators.
The truncation scheme is the simplest approach since it dis-
cards the remainder.

4 Intelligent Floating Point Library

Given a full spectrum of implementation trade-offs, it
can be difficult for users to manually pick the best parame-
ters for a specific floating point unit with defined operating
characteristics. A floating point unit library and generation
flow was developed to automate the parameter selection.
This flow has been integrated into ASC [15], a C++-based
stream compiler tool developed at Bell Laboratories.

4.1 ASC: A Stream Compiler for FPGAs

ASC requires a series of steps to convert C++ code to
an FPGA bitstream. Initially, the ASC programmer selects
a piece of the original program and transforms it to ASC
code. In performing this transformation the user can trade-
off silicon area for latency and throughput to explore the
implementation space. ASC semantics are implemented as
a C++ class library consisting of user defined types and op-
erators for custom types. Custom hardware type operators
are mapped to the PAM-Blox II module generation environ-
ment [13]. PAM-Blox II uses Compaq PamDC [14], a gate
level design library, to generate hardware net-lists.

ASC uses types and attributes to hook the programmers
algorithm description to the architectural features of the
stream architecture data path. These custom types allow
the application programmer to specify number representa-
tion size and form for each program variable. Each vari-
able has a set of attributes, such as an architectural attribute
and a sign attribute, for specifying negative number repre-
sentations. Number representation types are custom types
implemented in C++. The architecture attribute and the
sign attribute are parameters stored in the hardware vari-
able class state. In the case of floating point variables, the
type is HWfloat, and the attributes are the bitwidth of the
mantissa, the bitwidth of the exponent, etc.

For example, the following ASC code creates a stream
of floating point numbers (a) as input and produces an in-
cremented stream of output numbers (b). Each number is
incremental SIZE times:

5

ASC code:

STREAM_START;
// variables and bitwidths
HWfloat a(IN, 24, 8);
HWfloat b(OUT, 24, 8);
for (i=0; i < SIZE; i++)

b = a + 1.0;
STREAM_END;

This program is compiled with a conventional C++ com-
piler and generates an FPGA net-list. Note that the floating
point format in the example has a 24 bit mantissa and an 8
bit exponent.

4.2 Floating Point Unit Selection

For each C++ expression in ASC code, users can choose
AREA, THROUGHPUT, or LATENCY optimization options.
By selecting one of these three modes, the generator selects
the appropriate algorithm and architecture for each floating
point operator and generates the appropriately-sized unit.
Given area limitations, the tool provides the proper imple-
mentation choice based on a pre-defined cost function.

Parameter galg selects the floating point algorithm
from IEEE standard, 2-path, or LOP floating point addition
algorithms. The 2-path algorithm gives the smallest latency.

From experimentation, it was determined that area usage
can be estimated with a linear function:

F
�
x � � a � x

�
b (1)

where F
�
x � gives the number of LUTs and x is the man-

tissa bitwidth. The exponent is 8-bit by default. The linear
equation of the curve indicates the linear growth of subcom-
ponents such as ripple adders, comparators, and shifters.

In addition to area constraints, five additional parameters
are used to control the design of floating operators in this
library.

pipelining: gpipe={PIPE,ALIGN,NORM,NONE};
tbuf: gsh ={TBUF,BARREL};
normalize: gnorm={YES,NO};
rounding: ROUNDING_CHOICE;

Parameter gpipe specifies if pipelining occurs at all
stages, at the alignment stage, at the normalization stage,
or not at all.

Parameter tbuf specifies the low level implementa-
tion of the normalizer, using either Xilinx tri-state buffers
(TBUF) or using a LUT-based barrel shifter.

Parameter gnorm indicates the use of selective normal-
ization. (normalization after every operation).

Parameter ROUNDING_CHOICE indicates one of the six
rounding modes: (1) none, (2) truncation, (3) IEEE, (4)

100

200

300

400

500

600

700

800

900

1000

1100

0 5 10 15 20 25 30 35

LU
T

#

Mantissa bitwidth

Algorithm Compare (Unsigned Sub)

2-path
LOP

Standard

Figure 6. Area of Different FPGA Addition Al-
gorithms

nearest, (5) random, (6) global-random. The default is trun-
cation.

The other three parameters are automatically determined
based on the required throughput, latency and area. Full
pipelining is used if high throughput is desired. TBUFs are
used to reduce area. Normalization, if required, is inserted.
For advanced users, some parameters can be set manually
to better assist the trade-off options.

5 Results

To evaluate the performance of our floating point unit li-
brary and generator, ASC was used to evaluate a spectrum
of floating point unit designs. Resource usage and perfor-
mance numbers were obtained using the Xilinx ISE4.1 [24]
placement and routing tool set. All results are for the Xilinx
XCV300E-6. Unless otherwise noted, all exponents follow
the 8-bit IEEE754 standard.

5.1 Floating Point Algorithms

Fig. 6 and Fig. 7 present the area and unpipelined la-
tency of the three algorithms across a range of mantissa bit
widths. As expected, the 2-path algorithm has the smallest
latency and uses the most programmable logic resources.
With a 24-bit mantissa and 8-bit exponent, the 2-path float-
ing point adder is 12% faster and 28% larger than the stan-
dard floating point adder. The size and performance of the
LOP algorithm falls between the two algorithms.

As previous discussed in Section 2, the size of the the
mantissa adder, exponent comparator, and LOD/LOP, in
FPGA floating point adders grow linearly with bit width.
In contrast, shifter size is O(mlog

�
m �), where m is the man-

tissa bit width. This is approximately linear for small m.

6

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

La
te

nc
y(

ns
)

Mantissa bitwidth

Algorithm Compare (Unsigned Sub)

Standard
LOP

2-path

Figure 7. Latency of Different FPGA Addition
Algorithms

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40 45

F
F

#

1/Throughput(ns)

Tradeoff between Area & Throughput

2-Path
Standard

LOP

Figure 8. Trade-off Between Throughput and
Area

Fig. 8 presents the trade-off between throughput and flip
flop counts for the three algorithms. The floating point units
support a 32-bit mantissa with an 8-bit exponent. In Fig. 8,
the points at the right end of the lines are the modules opti-
mized for latency. These modules have no internal flip flops.
Fully block-level pipelined units correspond the points at
the left. The intermediate points represents the modules ob-
tained by selecting the partial pipelining options of gpipe.
The 2-path tradeoff curve drops off more quickly since there
are two data paths which require additional control circuitry.

5.2 Implementation of Sign Mode

Fig. 9 and Fig. 10 present the area and latency compar-
ison of standard signed and unsigned floating point adders.

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35

LU
T

#

Mantissa bitwidth

Comparison Between Sign & Unsigned Addition
(standard algorithm)

Signed
Unsigned

Figure 9. Sign Vs. Unsigned

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

La
te

nc
y(

ns
)

Mantissa bitwidth

Comparison Between Signed & Unsigned Addition
(standard algorithm)

Signed
Unsigned

Figure 10. Sign Vs. Unsigned

The numbers in Fig. 9 and Fig. 10 indicate that the un-
signed adder is about 39% smaller and 94% faster than the
sign-magnitude adder with a 24-bit mantissa. These im-
provements are a result of the elimination of the normalizer
for unsigned operation. The slope is a result of the linear
growth of the mantissa adder and pre-shifter.

5.3 Normalizer

Fig. 11 and Fig. 12 show the area and latency of the sign-
magnitude standard floating point adders with and without
the normalizer. For designs with a 24-bit mantissa and 8-
bit exponent, the adder which excluded the normalizer and
associated multiplexer is 42% smaller and 76% faster.

5.4 Rounding

The affect of rounding on LUT area and design perfor-
mance is shown in Fig.13. The results were calculated for

7

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35

LU
T

#

Mantissa bitwidth

Signmagnitude Add

Standard
W/o normalizer

Figure 11. Normalized Vs. Un-normalized
Area

20

25

30

35

40

45

50

55

60

0 5 10 15 20 25 30 35

La
te

nc
y(

ns
)

Mantissa bitwidth

Signmagnitude Add

Standard
W/o normalizer

Figure 12. Normalized Vs. Un-normalized La-
tency

a floating point ader with a 32-bit floating point multiplier
(4-bit exponent). The resulting 24-bit mantissa rounds to a
12-bit mantissa after multiplication.

5.5 Comparative Result with Commercial Float-
ing Point Units

To evaluate the performance of our generator, the cre-
ated modules are compared with modules taken from Xil-
inx [4] and Nallatech [16] FPGA floating point libraries. A
IEEE754 standard compatible module with fixed frequency,
bit-width, and pipeline stages was chosen.

For comparison, IEEE standard two 24-bit mantissa and
8-bit exponent modules were generated using our flow.
Module A is optimized for latency and module B is opti-

0

40

30

20

10

(nS)

���������
���������������
������

0

380

360

340

320

(LUT#)

������
	�	
�

������������������

IEEE

Global Random

Truncation

Biased To−near

Random

��
��
��
��
�

������
������
������
������
���

������
������
������
������
���

������
������
������
������
���

��

��

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���

������
������
������
������
���

���

���

(b) Latency(a) Area

Figure 13. Trade-off of Rounding Schemes

mized for throughput. Both modules use the same bit width
and sign mode as the commercial libraries. All the parame-
ters are obtained for the Xilinx XCV300E-6.

It can be seen from Fig.14 that both A and B consume
fewer resources compared with the commercial modules.
Module A has half the latency of the Xilinx core, which is
the fastest of the two commercial cores examined. Module
B has a higher throughput than the Xilinx module, but is
slower than the Nallatech module.

6 Performance of a Wavelet Application

To show the utility of our generation system, floating
point units generated with our system were integrated into
the design flow of a wavelet filter. As shown in Eq. 2, for
this application an input sequence, x, is convolved with nine
coefficients. This application consists of 9 floating point
multipliers and 8 floating point adders.

y � i � �
9

∑
j � 1

α � j ��� x � j �
i � (2)

ASC code was created for this application. All floating
point units were based on IEEE754 standard floating point
format and were generated automatically using our flow.
The application allows for pipelined operation by sequen-
tializing operations. Application latency is the latency sum
of 9 floating point multipliers and 8 adders. The module
generator automatically picked the parameters for the units.
Performance numbers are shown in Table 1.

7 Conclusion

This paper presents a floating point unit generator for
FPGAs, which, based on the requirements on throughput,
area and latency, is able to create a range of floating point
units. Our approach implements three floating point algo-
rithms, the 2-path, LOP and the IEEE standard algorithms.
Through experimentation, it has been shown that the area
usage is roughly linear in bit width. By choosing different

8

0

2500

2000

1500

1000

500

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

(LUT#)

0

250

200

150

100

50

���
���
���

���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���(nS)

0

125

100

75

50

25

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

�

�

���
���
���

���
���
���

(MHz)

����

������

(a) Area (b) Latency (c) Throughput

Nallatech Core

Xilinx Core

Module A

Module B

Figure 14. Comparison with Commercial Cores

Optimization Choice Clock Period(ns) Cycle Latency Slices LUTs Flip Flop
Throughput 31.7 156 9638 16,125 12,154

Table 1. Performance of Wavelet Filter Application

algorithms, it is possible to trade off latency and area. Fur-
thermore, customized sign modes, normalizing and round-
ing schemes can be selected to further optimize the area
and performance. Our flow has been integrated into the
ASC design environment. The library module generators
are built to automate algorithm and architecture selection.
Given area limitations, the module generator is able to se-
lect the unit with the appropriate precision.

We plan to continue this work by applying it to additional
applications. Another future step includes the integration of
on-chip block memories into the design flow.

References

[1] E. Antelo, M. Bóo, J. Bruguera, and E. Zapata. Design
of a novel circuit for two operand normalization. IEEE
Transactions on VLSI Systems, 6(1):173–176, 1998.

[2] P. Belanović and M. Leeser. A library of parameter-
ized floating point modules and their use. In the In-
ternational Conference on Field Programmable Logic
and Application, Lecture Notes in Computer Science.
Springer, 2002.

[3] J. D. Bruguera and T. Lang. Leading–one prediction
with concurrent position correction. IEEE Transac-
tions on Computers, 48(10):1083–1097, 1999.

[4] Digital Core Design. Alliance Core: DFPADD Float-
ing Point Adder. In http://www.dcd.pl, 2001.

[5] B. Fagin and C. Renard. Field programmable gate ar-
rays and floating point arithmetic. IEEE Transactions
on VLSI Systems, 2(3):365–367, Sept. 1994.

[6] M. Farmwald. On the Design of High Performance
Digital Arithmetic Units. PhD thesis, Stanford Uni-
versity, Aug. 1981.

[7] A. A. Gaffar, W. Luk, P. Y. Cheung, N. Shirazi, and
J. Hwang. Automating customisation of floating-point
designs. In Field-Programmable Logic and Applica-
tions, springer, 2002.

[8] E. Hokenek and R. Montoye. Leading-Zero Antici-
pator (LZA) in the IBM RISC System/6000 Floating-
Point Execution Unit. IBM Journal Research and De-
velopment, 34(1):71–77, 1990.

[9] IEEE. IEEE Std 754-IEEE Standard for Binary
Floating-Point Arithmetic. In http://standars.ieee.org/
reading/ieee/std/busarch/754-1984.pdf, 1984.

[10] G. Lienhart, A. Kugel, and R. Ma̋nner. Using
Floating-Point Arithmetic on FPGAs to Accelerate
Scientific N-Body Simulations. In IEEE Symp. on
Field-Programmable Custom Computing Machines
(FCCM), Napa, CA, Apr. 2002.

[11] W. B. Ligon, S. McMillan, G. Monn, F. Stivers, and
K. D. Underwood. A Re-evaluation of the Practical-
ity of Floating-Point Operations on FPGAs. In IEEE
Symposium on Field-Programmable Custom Comput-
ing Machines, Napa, CA, Apr. 1998.

[12] L. Louca, W. H. Johnson, and T. A. Cook. Implemen-
tation of IEEE Single Precision Floating Point Addi-
tion and Multiplication on FPGAs. In IEEE Workshop
on FPGAs for Custom Computing Machines, pages
107–116, Napa, CA, Apr. 1996.

9

[13] O. Mencer. PAM-Blox II: Design and Evaluation of
C++ Module Generation for Computing with FPGAs.
In IEEE Symp. on Field-Programmable Custom Com-
puting Machines (FCCM), Napa, CA, Apr. 2002.

[14] O. Mencer, M. Morf, and M. J. Flynn. PAM-Blox:
High Performance FPGA Design for Adaptive Com-
puting. In IEEE Symposium on FPGAs for Custom
Computing Machines, Napa, CA, Apr. 1998.

[15] O. Mencer, M. Platzner, M. Morf, and M. J. Flynn.
Object-oriented domain-specific compilers for pro-
gramming fpgas. IEEE Transactions on VLSI, special
issue on Reconfigurable Computin, Feb. 2001.

[16] Nallatech. IEEE754 Floating Point Core. In
http://www.nallatech.com, 2001.

[17] S. Oberman, H. Al-Twaijry, and M. Flynn. The SNAP
Project: Design of Floating Point Arithmetic Units. In
Proceedings of Arith-13, Pacific Grove, July 1997.

[18] V. G. Oklobdzija. An algoritmic and novel design
of a leading zero detector circuit: Comparison with
logic synthesis. IEEE Transactions on VLSI Systems,
2(1):124–128, 1993.

[19] D. S. Parker, B. Pierce, and P. R. Eggert. Monte carlo
arithmetic: How to gamble with floating point and
win. Computing in science and engineering, 2(4):58–
68, July/Aug 2000.

[20] N. Quach and M. Flynn. Leading-one prediction, im-
plementation, generalization and application. Tech-
nical Report CSL-TR-91-463. Stanford University,
1991.

[21] N. Shirazi, A. Walters, and P. Athanas. Quantitative
Analysis of Floating Point Arithmetic on FPGA-based
Custom Computing Machines. In IEEE Workshop on
FPGAs for Custom Computing Machines, pages 155–
162, Napa, CA, Apr. 1995.

[22] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase,
K. Mashiko, and T. Sumi. Leading-zero antici-
patory logic for high speed floating point addition.
IEEE Journal of Solid-State Circuits, 31(8):1157–
1164, 1996.

[23] S. Waser and M. J. Flynn. Introduction to Arithmetic
for Digital Systems Designers. Holt, Rinehard & Win-
ston, New York, 1982.

[24] Xilinx. ISE Logic Design Tools. In http://www. xil-
inx.com/xlnx/xil prodcat landingpage.jsp?title= De-
sign+Tools, 2002.

10

