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The oil and gas industry has an increasingly large demand for high-performance computation over huge volume of data.
Compared to common processors, field-programable gate arrays (FPGAs) can boost the computation performance with a
streaming computation architecture and the support for application-specific number representation. With hardware support
for reconfigurable number format and bit width, reduced precision can greatly decrease the area cost and I/O bandwidth of
the design, thus multiplying the performance with concurrent processing cores on an FPGA. In this paper, we present a tool to
determine the minimum number precision that still provides acceptable accuracy for seismic applications. By using the minimized
number format, we implement core algorithms in seismic applications (the FK step in forward continued-based migration and 3D
convolution in reverse time migration) on FPGA and show speedups ranging from 5 to 7 by including the transfer time to and from
the processors. Provided sufficient bandwidth between CPU and FPGA, we show that a further increase to 48X speedup is possible.
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1. Introduction

Seismic imaging applications in oil and gas industry involves
terabytes of data collected from fields. For each data sample,
the imaging algorithm usually tries to improve the image
quality by performing more costly computations. Thus,
there is an increasingly large demand for high-performance
computation over huge volume of data. Among all the
different kinds of imaging algorithms, downward continued-
based migration [1] is the most prevalent high-end imaging
technique today and reverse time migration appears to be
one of the dominant imaging techniques of the future.

Compared to conventional microprocessors, FPGAs
apply a different streaming computation architecture. Com-
putations we want to perform are mapped into circuit units
on the FPGA board. Previous work has already achieved 20X
acceleration for prestack Kirchhoff time migration [2] and
40X acceleration for subsurface offset gathers [3].

Besides the capability of performing computations in
a parallel way, FPGAs also support application-specific
number representations. Since all the processing units
and connections on the FPGA are reconfigurable, we can
use different number representations, such as fixed-point,

floating-point, logarithmic number system (LNS), residue
number system (RNS), and so forth, with different bit-width
settings. Different number representations lead to different
complexity of the arithmetic units, thus different costs and
performances of the resulting circuit design [4]. Switching to
a number representation that fits a given application better
can sometimes greatly improve the performance or reduce
the cost.

A simple case of switching number representations is to
trade off precision of the number representation with the
speed of the computation. For example, by reducing the
precision from 32-bit floating-point to 16-bit fixed-point,
the number of arithmetic units that fit into the same area
can be increased by scores of times. The performance of
the application is also improved significantly. Meanwhile, we
also need to watch for the possible degradation of accuracy
in the computation results. We need to check whether
the accelerated computation using reduced precision is still
generating meaningful results.

To solve the above problem in the seismic application
domain, we develop a tool that performs an automated preci-
sion exploration of different number formats, and figures out
the minimum precision that can still generate good enough
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Table 1

Integer part: m bits Fractional part: f bits

xm−1xm−2 · · · x0 x−1 · · · x− f +1x− f

Table 2

Sign: 1 bit Exponent: m bits Mantissa: f bits

S M F

seismic results. By using the minimized number format, we
implement core algorithms in seismic applications (complex
exponential step in forward continued based migration
and 3D convolution in reverse time migration) on FPGA
and show speedups ranging from 5 to 7 by including the
transfer time to and from the processors. Provided sufficient
bandwidth between CPU and FPGA, we show that a further
increase to 48X speedup is possible.

2. Background

2.1. Number Representation. As mentioned in Section 1,
precision and range are key resources to be traded off against
the performance of a computation. In this work, we look
at two different types of number representation: fixed-point
and floating-point.

Fixed-Point Numbers. The fixed-point number has two
parts, the integer part and the fractional part. It is in a format
as shown in Table 1.

When it uses a sign-magnitude format (the first bit
defines the sign of the number), its value is given by
(−1)xm−1·∑m−2

i=− f xi·2i. It may also use a two-complement
format to indicate the sign.

Floating-Point Numbers. According to IEEE-754 standard,
floating-point numbers can be divided into three parts: the
sign bit, the exponent, and the mantissa, shown as in Table 2.

Their values are given by (−1)S × 1·F × 2M . The sign
bit defines the sign of the number. The exponent part uses
a biased format. Its value equals to the sum of the original
value and the bias, which is defined as 2m−1− 1. The extreme
values of the exponent (0 and 2m − 1) are used for special
cases, such as values of zero and ±∞. The mantissa is an
unsigned fractional number, with an implied “1” to the left
of the radix point.

2.2. Hardware Compilation Tool. We use a stream compiler
(ASC) [5] as our hardware compilation tool to develop a
range of different solutions for seismic applications. ASC
was developed following research at Stanford University
and Bell Labs, and is now commercialized by Maxeler
Technologies. ASC enables the use of FPGAs as highly
parallel stream processors. ASC is a C-like programming
environment for FPGAs. ASC code makes use of C++ syntax
and ASC semantics which allow the user to program on the
architecture level, the arithmetic level, and the gate level.
ASC provides the productivity of high-level hardware design

// ASC code starts here
STREAM START;

// Hardware Variable Declarations
HWint in (IN);
HWint out (OUT);
HWint tmp (TMP);

STREAM LOOP (16);
tmp = (in� 1) + 55;
out = tmp;

// ASC code ends here
STREAM END;

Algorithm 1: A simple ASC example.

tools and the performance of low-level optimized hardware
design. On the arithmetic level, PAM-Blox II provides an
interface for custom arithmetic optimization. On the higher
level, ASC provides types and operators to enable research on
custom data representation and arithmetic. ASC hardware
types are HWint, HWfix, and HWfloat. Utilizing the data-
types, we build libraries such as a function evaluation library
or develop special circuits to solve particular computational
problems such as graph algorithms. Algorithm 1 shows
a simple example of an ASC description for a stream
architecture that doubles the input and adds “55.”

The ASC code segment shows HWint variables and the
familiar C syntax for equations and assignments. Compiling
this program with “gcc” and running it creates a netlist which
can be transformed into a configuration bitstream for an
FPGA.

2.3. Precision Analysis. There exist a number of research
projects that focus on precision analysis, most of which are
static methods that operate on the computational flow of
the design and uses techniques based on range and error
propagation to perform the analysis.

Lee et al. [6] present a static precision analysis technique
which uses affine arithmetic to derive an error model of the
design and applies simulated annealing to find out minimum
bit widths to satisfy the given error requirement. A similar
approach is shown in a bit-width optimization tool called
Prcis [7].

These techniques are able to perform an automated
precision analysis of the design and provide optimized
bit widths for the variables. However, they are not quite
suitable for seismic imaging algorithms. The first reason is
that seismic imaging algorithms usually involve numerous
iterations, which can lead to overestimation of the error
bounds and derive a meaningless error function. Secondly,
the computation in the seismic algorithms does not have
a clear error requirement. We can only judge the accuracy
of the computation from the generated seismic image.
Therefore, we choose to use a dynamic simulation method
to explore different precisions, detailed in Sections 3.3 and
3.4.
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2.4. Computation Bottlenecks in Seismic Applications. Down-
ward-continued migration comes in various flavors includ-
ing common azimuth migration [8], shot profile migra-
tion, source-receiver migration, plane-wave or delayed shot
migration, and narrow azimuth migration. Depending on
the flavor of the downward continuation algorithm, there are
four potential computation bottlenecks.

(i) In many cases, the dominant cost is the FFT step.
The dimensionality of the FFT varies from 1D (tilted
plane-wave migration [9]) to 4D (narrow azimuth
migration [10]). The FFT cost is often dominant due
to its n log(n) cost ratio, n being the number of points
in the transform, and the noncache friendly nature of
multidimensional FFTs.

(ii) The FK step, which involves evaluating (or looking
up) a square root function and performing complex
exponential is a second potential bottleneck. The
high operational count per sample can eat up signifi-
cant cycles.

(iii) The FX step, which involves a complex exponential,
or sine/second operation for lumbar disc herniation.
Spine 1993; 18: 2206-11. 16. Silvers HR, Lewis PJ,
Asch HL, Clabeaux DE. Lumbar diskectomy for
recurrent disk herniation. J Spinal Disord 1994;
7: 408-19. 17. Jonsson B, Stromqvist B. Repeat
decompression of lumbar nerve roots. A prospective
two-year evaluation. J Bone Joint Surg (Br) 1993;
75-B: 894-7. cosine multiplication, has a similar, but
computationally less demanding, profile. Subsurface
offset gathers for shot profile or plane-wave migra-
tion, particularly 3D subsurface offset gathers, can be
an overwhelming cost. The large op-count per sample
and the noncache friendly nature of the data usage
pattern can be problematic.

(iv) For finite difference-based schemes, a significant con-
volution cost can be involved.

The primary bottleneck of reverse time migration is
applying the finite-different stencil. In addition to the large
operation count (5 to 31 samples per cell) the access pattern
has poor cache behavior for real size problems. Beyond
applying the 3D stencil, the next most dominant cost is
implementing damping boundary conditions. Methods such
as perfectly matched layers (PMLs) can be costly [11]. Finally,
if you want to use reverse time migration for velocity analysis,
subsurface offset gathers need to be generated. The same cost
profile that exists in downward continued-based migration
exists for reverse time migration.

In this paper, we focus on two of the above computation
bottlenecks: one is the FK step in forward continued-
based migration, which includes a square root function
and a complex exponential operation; the other one is the
3D convolution in reverse time migration. We perform
automated precision exploration of these two computation
cores, so as to figure out the minimum precision that can still
generate accurate enough seismic images.

3. A Tool for Number Representation
Exploration

FPGA-based implementations have the advantage over cur-
rent software-based implementations of being able to use
customizable number representations in their circuit designs.
On a software platform, users are usually constrained to a
few fixed number representations, such as 32/64-bit integers
and single/double-precision floating-point, while the recon-
figurable logic and connections on an FPGA enables the users
to explore various kinds of number formats with arbitrary
bit widths. Furthermore, users are also able to design the
arithmetic operations for these customized number repre-
sentations, thus can provide a highly customized solution for
a given problem.

In general, to provide a customized number representa-
tion for an application, we need to determine the following
three things.

(i) Format of the Number Representation. There are existing
FPGA applications using fixed-point, floating-point, and
logarithmic number system (LNS) [12]. Each of the three
number representations has its own advantages and disad-
vantages over the others. For instance, fixed-point has simple
arithmetic implementations, while floating-point and LNS
provide a wide representation range. It is usually not possible
to figure out the optimal format directly. Exploration is
needed to guide the selection.

(ii) Bit Widths of Variables. This problem is generally
referred to as bit width or word-length optimization [6, 13].
We can further divide this into two different parts: range
analysis considers the problem of ensuring that a given
variable inside a design has a sufficient number of bits
to represent the range of the numbers, while in precision
analysis, the objective is to find the minimum number of
precision bits for the variables in the design such that the
output precision requirements of the design are met.

(iii) Design of the Arithmetic Units. The arithmetic opera-
tions of each number system are quite different. For instance,
in LNS, multiplication, division, and exponential operations
become as simple as addition or shift operations, while
addition and subtraction become nonlinear functions to
approximate. The arithmetic operations of regular data
formats, such as fixed-point and floating-point, also have
different algorithms with different design characteristics. On
the other hand, evaluation of elementary functions plays
a large part in seismic applications (trigonometric and
exponential functions). Different evaluation methods and
configurations can be used to produce evaluation units with
different accuracies and performance.

This section presents our tool that tries to figure out the
above three design options by exploring all the possible num-
ber representations. The tool is partly based on our previous
work on bit-width optimization [6] and comparison between
different number representations [14, 15].

Figure 1 shows our basic work flow to explore different
number representations for a seismic application. We man-
ually partition the Fortran program into two parts: one part
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Fortran program for seismic processing

Manual partition

Fortran code
executing on processors

Fortran code
targeting an FPGA

Profile

Range information
(max/min values)

Distribution information

Map to a circuit design:
arithmetic operation & function evaluation

Circuit design description

Translate circuit design description into
bit-accurate simulation code

Value simulator
with reconfigurable settings

Exploration with different configurations:
number representations, bit-width values, etc.

Final design with customized number representation

Figure 1: Basic steps to achieve a hardware design with customized
number representations.

runs on CPUs and we try to accelerate the other part (target
code) on FPGAs. The partition is based on two metrics: (1)
the target code shall consume a large portion of processing
time in the entire program, otherwise the acceleration does
not bring enough performance improvement to the entire
application; (2) the target code shall be suitable for a
streaming implementation on FPGA, thus highly probable
to accelerate. After partition, the first step is to profile
the target code to acquire information about the range of
values and their distribution that each variable can take. In
the second step, based on the range information, we map
theFortran code into a hardware design described in ASC
format, which includes implementation of arithmetic oper-
ations and function evaluation. In the third step, the ASC
description is translated into bit-accurate simulation code,
and merged into the original Fortran program to provide a
value simulator for the original application. Using this value
simulator, explorations can be performed with configurable
settings such as different number representations, different
bit widths, and different arithmetic algorithms. Based on the
exploration results, we can determine the optimal number
format for this application with regards to certain metrics
such as circuit area and performance.

3.1. Range Profiling. In the profiling stage, the major objec-
tive is to collect range and distribution information for
the variables. The idea of our approach is to instrument
every target variable in the code, adding function calls to

a b

0

c d

Figure 2: Four points to record in the profiling of range informa-
tion.

initialize data structures for recording range information and
to modify the recorded information when the variable value
changes.

For the range information of the target variables (vari-
ables to map into the circuit design), we keep a record of four
specific points on the axis, shown in Figure 2. The points a
and d represent the values far away from zero, that is, the
maximum absolute values that need to be represented. Based
on their values, the integer bit width of fixed-point numbers
can be determined. Points b and c represent the values close
to zero, that is, the minimum absolute values that need to be
represented. Using both the minimum and maximum values,
the exponent bit width of floating-point numbers can be
determined.

For the distribution information of each target variable,
we keep a number of buckets to store the frequency of
values at different intervals. Figure 3 shows the distribution
information recorded for the real part of variable “wfld” (a
complex variable). In each interval, the frequency of positive
and negative values is recorded separately. The results show
that, for the real part of variable “wfld,” in each interval, the
frequencies of positive and negative values are quite similar,
and the major distribution of the values falls into the range
10−1 to 104.

The distribution information provides a rough metric
for the users to make an initial guess about which number
representations to use. If the values of the variables cover
a wide range, floating-point and LNS number formats are
usually more suitable. Otherwise, fixed-point numbers shall
be enough to handle the range.

3.2. Circuit Design: Basic Arithmetic and Elementary Func-
tion Evaluation. After profiling range information for the
variables in the target code, the second step is to map the
code into a circuit design described in ASC. As a high-
level FPGA programming language, ASC provides hardware
data types, such as HWint, HWfix, and HWfloat. Users can
specify the bit-width values for hardware variables, and ASC
automatically generates corresponding arithmetic units for
the specified bit widths. It also provides configurable options
to specify different optimization modes, such as AREA,
LATENCY, and THROUGHPUT. In the THROUGHPUT
optimization mode, ASC automatically generates a fully
pipelined circuit. These features make ASC an ideal hardware
compilation tool to retarget a piece of software code onto the
FPGA hardware platform.

With support for fixed-point and floating-point arith-
metic operations, the target Fortran code can be transformed
into ASC C++ code in a straightforward manner. We also
have interfaces provided by ASC to modify the internal
settings of these arithmetic units.

Besides basic arithmetic operations, evaluation of ele-
mentary functions takes a large part in seismic applications.
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Figure 3: Range distribution of the real part of variable “wfld.”
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The other buckets with index = x store the values in the range
(10x−1, 10x].

For instance, in the first piece of target code we try to
accelerate, the FK step, a large portion of the computation
is to evaluate the square root and sine/cosine functions. To
map these functions into efficient units on the FPGA board,
we use a table-based uniform polynomial approximation
approach, based on Dong-U Lee’s work on optimizing
hardware function evaluation [16]. The evaluation of the two
functions can be divided into three different phases [17].

(i) Range reduction: reduce the range of the input
variable x into a small interval that is convenient
for the evaluation procedure. The reduction can
be multiplicative (e.g., x′ = x/22n for square root
function) or additive (e.g., x′ = x − 2πṅ for sine/
cosine functions).

(ii) Function evaluation: approximate the value of the
function using a polynomial within the small inter-
val.

(iii) Range reconstructions: map the value of the function
in the small interval back into the full range of the
input variable x.

To keep the whole unit small and efficient, we use
degree-one polynomial so that only one multiplication and
one addition are needed to produce the evaluation result.
Meanwhile, to preserve the approximation error at a small
scale, the reduced evaluation range is divided into uniform
segments. Each segment is approximated with a degree-one
polynomial, using the minimax algorithm. In the FK step,
the square root function is approximated with 384 segments
in the range of [0.25, 1] with a maximum approximation
error of 4.74 × 10−7, while the sine and cosine functions are
approximated with 512 segments in the range of [0, 2]with a
maximum approximation error of 9.54× 10−7.

3.3. Bit-Accurate Value Simulator. As discussed in Sect-
ion 3.1, based on the range information, we are able to
determine the integer bit width of fixed-point, and partly

determine the exponent bit width of floating-point numbers
(as exponent bit width does not only relate to the range
but also to the accuracy). The remaining bit widths, such as
the fractional bit width of fixed-point, and the mantissa bit
width of floating-point numbers, are predominantly related
to the precision of the calculation. In order to find out the
minimum acceptable values for these precision bit widths, we
need a mechanism to determine whether a given set of bit-
width values produce satisfactory results for the application.

In our previous work on function evaluation or other
arithmetic designs, we set a requirement of the absolute error
of the whole calculation, and use a conservative error model
to determine whether the current bit-width values meet the
requirement or not [6]. However, a specified requirement for
absolute error does not work for seismic processing. To find
out whether the current configuration of precision bit width
is accurate enough, we need to run the whole program to
produce the seismic image, and find out whether the image
contains the correct pattern information. Thus, to enable
exploration of different bit-width values, a value simulator
for different number representations is needed to provide
bit-accurate simulation results for the hardware designs.

With the requirement to produce bit-accurate results as
the corresponding hardware design, the simulator also needs
to be efficiently implemented, as we need to run the whole
application (which takes days using the whole input dataset)
to produce the image.

In our approach, the simulator works with ASC for-
mat C++ code. It reimplements the ASC hardware data
types, such as HWfix and HWfloat, and overloads their
arithmetic operators with the corresponding simulation
code. For HWfix variables, the value is stored in a 64-
bit signed integer, while another integer is used to record
the fractional point. The basic arithmetic operations are
mapped into shifts and arithmetic operations of the 64-
bit integers. For HWfloat variables, the value is stored in a
80-bit extended-precision floating-point number, with two
other integers used to record the exponent and mantissa
bit width. To keep the simulation simple and fast, the
arithmetic operations are processed using floating-point
values. However, to keep the result bit accurate, during each
assignment, by performing corresponding bit operations,
we decompose the floating-point value into mantissa and
exponent, truncate according to the exponent and mantissa
bit widths, and combine them back into the floating-point
value.

3.4. Accuracy Evaluation of Generated Seismic Images. As
mentioned above, the accuracy of a generated seismic image
depends on the pattern contained inside, which estimates the
geophysical status of the investigated area. To judge whether
the image is accurate enough, we compare it to a “target”
image, which is processed using single-precision floating-
point and assumed to contain the correct pattern.

To perform this pattern comparison automatically, we
use techniques based on prediction error filters (PEFs) [18]
to highlight differences between two images. The basic work
flow of comparing image a to image b (assume image a is the
“target” image) is as follows.
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(i) Divide image a into overlapping small regions of 40×
40 pixels, and estimate PEFs for these small regions.

(ii) Apply these PEFs to both image a and image b to get
the results a′ and b′.

(iii) Apply algebraic combinations of the images a′ and b′

to acquire a value indicating the image differences.

By the end of the above work flow, we achieve a single
value which describes the difference from the generated
image to the “target image.” For convenience of discussion
afterwards, we call this value as “difference indicator” (DI).

Figure 4 shows a set of different seismic images calculated
from the same dataset, and their DI values compared to
the image with correct pattern. The image showing correct
pattern is calculated using single-precision floating-point,
while the other images are calculated using fixed-point
designs with different bit-width settings. All these images are
results of the bit-accurate value simulator mentioned above.

If the generated image contains no information at all
(as shown in Figure 4(a)), the comparison does not return
a finite value. This is mostly because a very low precision
is used for the calculation. The information is lost during
numerous iterations and the result only contains zeros or
infinities. If the comparison result is in the range of 104

to 105 (Figures 4(b) and 4(c)), the image contains random
pattern which is far different from the correct one. With
a comparison result in the range of 103 (Figure 4(d)), the
image contains similar pattern to the correct one, but
information in some parts is lost. With a comparison result
in the range of 102 or smaller, the generated image contains
almost the same pattern as the correct one.

Note that the DI value is calculated from algebraic
operations on the two images you compare with. The
magnitude of DI value is only a relative indication of the
difference between the two images. The actual usage of the DI
value is to figure out the boundary between the images that
contains mostly noises and the images that provide useful
patterns of the earth model. From the samples shown in
Figure 7, in this specific case, the DI value of 102 is a good
guidance value for acceptable accuracy of the design. From
the bit-width exploration results shown in Section 4, we can
see that the DI value of 102 also happens to be a precision
threshold, where the image turns from noise into accurate
pattern with the increase of bit width.

3.5. Number Representation Exploration. Based on all the
above modules, we can now perform exploration of different
number representations for the FPGA implementation of a
specific piece of Fortran code.

The current tools support two different number rep-
resentations, fixed-point, and floating-point numbers (the
value simulator for LNS is still in progress). For all the
different number formats, the users can also specify arbitrary
bit widths for each different variable.

There are usually a large number of different variables
involved in one circuit design. In our previous work, we
usually apply heuristic algorithms, such as ASA [19], to find
out a close-to-optimal set of bit-width values for different
variables. The heuristic algorithms may require millions of

test runs to check whether a specific set of values meet the
constraints or not. This is acceptable when the test run is only
a simple error function and can be processed in nanoseconds.
In our seismic processing application, depending on the
problem size, it takes half an hour to several days to run
one test set and achieve the result image. Thus, heuristic
algorithms become impractical.

A simple and straightforward method to solve the
problem is to use uniform bit width over all the different
variables, and either iterate over a set of possible values or
use a binary search algorithm to jump to an appropriate
bit-width value. Based on the range information and the
internal behavior of the program, we can also try to divide
the variables in the target Fortran code into several different
groups, and assign a different uniform bit width for each
different group. For instance, in the FK step, there is a clear
boundary that the first half performs square, square root,
and division operations to calculate an integer value, and
the second half uses the integer value as a table index, and
performs sine, cosine, and complex multiplications to get the
final result. Thus, in the hardware circuit design, we divide
the variables into two groups based on which half it belongs
to. Furthermore, in the second half of the function, some of
the variables are trigonometric values in the range of [−1, 1],
while the other variables represent the seismic image data
and scale up to 106. Thus, they can be further divided into
two parts and assigned bit widths separately.

4. Case Study I: The FK Step in Downward
Continued-Based Migration

4.1. Brief Introduction. The code shown in Algorithm 2
is the computationally intensive portion of the FK step
in a downward continued-based migration. The governing
equation for the FK step is the double square root equation
(DSR) [20]. The DSR equation describes how to downward
continue a wave-field U one depth Δz step. The equation
is valid for a constant velocity medium v and is based on
the wave number of the source ks and receiver kg . The DSR
equation can be written as (1), where ω is the frequency.
The code takes the approach of building a priori a relatively
small table of the possible values of vk/ω. The code then
performs a table lookup that converts a given vk/ω value to
an approximate value of the square root.

In practical applications, “wfld” contains millions of data
items. The computation pattern of this function makes it an
ideal target to map to a streaming hardware circuit on an
FPGA.

4.2. Circuit Design. The mapping from the software code
to a hardware circuit design is straightforward for most
parts. Figure 5 shows the general structure of the circuit
design. Compared with the software Fortran code shown in
Algorithm 2, one big difference is the handling of the sine
and cosine functions. In the software code, the trigonometric
functions are calculated outside the five-level loop, and
stored as a lookup table . In the hardware design, to take
advantage of the parallel calculation capability provided by
the numerous logic units on the FPGA, the calculation
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Figure 4: Examples of seismic images with different Difference Indicator (DI) values. “Inf” means that the approach does not return a finite
difference value. “10x” means that the difference value is in the range of [1× 10x , 1× 10x+1).
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! generation of table step%ctable

do i = 1, size (step%ctable)
k = ko∗ step%dstep ∗ dsr%phase (i)
step%ctable (i) = dsr%amp (i) ∗ cmplx (cos(k), sin(k))

end do

! the core part of function wei wem

do i4 = 1, size (wfld, 4)
do i3 = 1, size (wfld, 3)

do i2 = 1, size (wfld, 2)
do i1 = 1, size (wfld, 1)

k = sqrt (step%kx (i1, i3) ∗∗ 2 + step%ky (i2, i4)∗∗2)
itable = max (1, min (int (1 + k/ko/dsr%d), dsr%n))
wfld (i1, i2, i3, i4, i5) = wfld (i1, i2, i3, i4, i5) ∗ step%ctable (itable)

end do
end do

end do
end do

Algorithm 2: The code for the major computations of the FK step.

Table 3: Profiling results for the ranges of typical variables in
function “wei wem.” “wfld real” and “wfld img” refer to the real
and imaginary parts of the “wfld” data. “Max” and “Min” refer to
the maximum and minimum absolute values of variables.

Variable Step%x ko wfld real wfld img

Max 0.377 0.147 3.918e6 3.752e6

Min 0 7.658e–3 4.168e–14 5.885e–14

of the sine/cosine functions is merged into the processing
core of the inner loop. Three function evaluation units are
included in this design to produce values for the square
root, cosine and sine functions separately. As mentioned in
Section 3.2, all three functions are evaluated using degree-
one polynomial approximation with 386 or 512 uniform
segments:

U
(
ω, ks, kg , z + Δz

)

= exp

[

− iωv
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1− vkg
ω

+

√

1− vks
ω

)]

U
(
ω, ks, kg , z

)
.

(1)

The other task in the hardware circuit design is to map
the calculation into arithmetic operations of certain number
representations. Table 3 shows the value range of some
typical variables in the FK step. Some of the variables (in
the part of square root and sine/cosine function evaluations)
have a small range within [0, 1], while other values (especially
“wfld” data) have a wide range from 10−14 to 106. If we use
floating-point or LNS number representations, their wide
representation ranges are enough to handle these variables.
However, if we use fixed-point number representations in
the design, special handling is needed to achieve acceptable
accuracy over wide ranges.

The first issue to consider in fixed-point designs is the
enlarged error caused by the division after the evaluation

Step kx Step ky

sqrt sum = step kx2+ step ky2

Function evaluation unit
sqrt res =

√
sqrt sum

Itable = max(1, min(sqrt res/ko/dsr% d, dsr% n))

k = ko×step% dstep×dsr% phase (itable)

Function evaluation unit
a = cos(k)

Function evaluation unit
b = sin(k)

wfld = wfld×cmplx(a, b)×dsr% amp (itable)wfld

Updated wfld

Figure 5: General structure of the circuit design for the FK step.

of the square root (
√

step%x2 + step%y2/ko). The values of
step%x, step%y, and ko come from the software program
as input values to the hardware circuit, and contain errors
propagated from previous calculations or caused by the
truncation/rounding into the specified bit width on hard-
ware. Suppose the error in the square root result sqrt res
is Esqrt, and the error in variable ko is Eko, assuming that
the division unit itself does not bring extra error, the
error in the division result is given by Esqrt·sqrt res/ko +
Eko·(sqrt res/ko2). According to the profiling results, ko
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holds a dynamic range from 0.007658 to 0.147, and sqrt res
has a maximum value of 0.533 (variables step%x and step%y
have similar ranges). In the worst case, the error from
sqrt res can be magnified by 70 times, and the error from
ko magnified by approximately 9000 times.

To solve the problem of enlarged errors, we perform shifts
at the input side to keep the three values step%x, step%y,
and ko in a similar range. The variable ko is shifted by the
distance d1 so that the value after shifting falls in the range
of [0.5,1). The variables step%x and step%y are shifted by
another distance d2 so that the larger value of the two also
falls in the range of [0.5,1). The difference between d1 and
d2 is recorded so that after the division, the result can be
shifted back into the correct scale. In this way, the sqrt res
has a range of [0.5,1.414] and ko has a range of [0.5,1]. Thus,
the division only magnifies the errors by an order of 3 to 6.
Meanwhile, as the three variables step%x, step%y, and ko are
originally in single-precision floating-point representation
in software, when we pass their values after shifts, a large
part of the information stored in the mantissa part can be
preserved. Thus, a better accuracy is achieved through the
shifting mechanism for fixed-point designs.

Figure 6 shows experimental results about the accuracy
of the table index calculation when using shifting compared
to not using shifting, with different uniform bit widths. The
possible range of the table index result is from 1 to 2001. As
it is the index for tables of smooth sequential values, an error
within five indices is generally acceptable. We use the table
index results calculated with single-precision floating-point
as the true values for error calculation. When the uniform
bit width of the design changes from 10 to 20, designs using
the shifting mechanism show a stable maximum error of
3, and an average error around 0.11. On the other hand,
the maximum error of designs without shifting vary from
2000 to 75, and the average errors vary from approximately
148 to 0.5. These results show that the shifting mechanism
provides much better accuracy for the part of the table index
calculation in fixed-point designs.

The other issue to consider is the representation of
“wfld” data variables. As shown in Table 3, both the real
and imaginary parts of “wfld” data have a wide range from
10−14 to 106. Generally, fixed-point numbers are not suitable
to represent such wide ranges. However, in this seismic
application, the “wfld” data is used to store the processed
image information. It is more important to preserve the
pattern information shown in the data values rather than the
data values themselves. Thus, by omitting the small values
and using the limited bit width to store the information
contained in large values, fixed-point representations still
have a big chance to achieve accurate image in the final step.
In our design, for convenience of bit-width exploration, we
scale down all the “wfld” data values by a ratio of 2−22 so that
they fall into the range of [0,1).

4.3. Bit-Width Exploration Results. The original software
Fortran code of the FK step performs the whole computation
using single-precision floating-point. We firstly replace the
original Fortran code of the FK step with a piece of C++
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Figure 6: Maximum and average errors for the calculation of the
table index when using and not using the shifting mechanism in
fixed-point designs, with different uniform bit-width values from
10 to 20.

code using double-precision floating-point to generate a full-
precision image to compare with. After that, to investigate
the effect of different number representations for variables
in the FK step on the accuracy of the whole application, we
replace the code of the FK step with our simulation code
that can be configured with different number representations
and different bit widths and generate results for different
settings. The approach for accuracy evaluation, introduced
in Section 3.4, is used to provide DI values that indicate the
differences in the patterns of the resulted seismic images from
the pattern in full-precision image.

4.3.1. Fixed-Point Designs. In the first step, we apply uniform
bit width over all the variables in the design. We change the
uniform bit width from 10 to 20. With of uniform bit width
of 16, the design provides a DI value around 100, which
means that the image contains a pattern almost the same to
the correct one.

In the second step, as mentioned in Section 3.5, accord-
ing to their characteristics in range and operational behavior,
we can divide the variables in the design into different
groups and apply a uniform bit width in each group. In the
hardware design for the FK step, the variables are divided
into three groups: SQRT, the part from the beginning to
the table index calculation, which includes an evaluation of
the square root; SINE, the part from the end of SQRT to
the evaluation of the sine and cosine functions; WFLD, the
part that multiplies the complex values of “wfld” data with
a complex value consisting of the sine and cosine values
(for phase modification), and a real value (for amplitude
modification). To perform the accuracy investigation, we
keep two of the bit-width values constant, and change the
other one gradually to see its effect on the accuracy of the
entire application.

Figure 7(a) shows the DI values of the generated images
when we change the bit width of the SQRT part from 6 to
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20. The bit widths of the SINE and WFLD parts are set to
20 and 30, respectively. Large bit widths are used for the
other two parts so that they do not contribute much to the
errors and the effect of variables bit width in SQRT can be
extracted out. The case of SQRT bit widths shows a clear
precision threshold at the bit-width value of 10. When the
SQRT bit width increases from 8 bits to 10 bits, the DI value
falls down from the scale of 105 to the scale of 102. The
significant improvement in accuracy is also demonstrated
in the generated seismic images. The image on the left of
Figure 7(a) is generated with 8-bit design. Compared to the
“true” image calculated with single-precision floating-point,
the lower part of the image is mainly noise signals, while the
lower part starts to show a similar pattern as the correct ones.
The difference between the qualities of the lower and upper
parts is because of the imaging algorithm, which calculates
the image from summation of a number of points at the
corresponding depth. In acoustic models, there are generally
more sample points when we go deeper into the earth.
Therefore, using the same precision, the lower part shows a
better quality than the upper part. The image on the right
of Figure 7(a) is generated with 10-bit design, and already
contains almost the same pattern as the “true” image.

In a similar way, we perform the exploration for the other
two parts, and acquire the precision threshold 10, 12, and 16
for the SQRT, SINE, and WFLD parts, respectively. However,
as the above results are acquired with two out of the three bit
widths set to very large values, the practical solution shall be
lightly larger than these values. Meanwhile, constrained by
the current I/O bandwidth of 64 bits per second, the sum of
the bit widths for SQRT and WFLD parts shall be less than
30. We perform further experiments for bit-width values
around the initial guess point, and find out that bit widths
of 12, 16, and 16 for the three parts provide a DI value of
131.5 and also meet the bandwidth requirement.

4.3.2. Floating-Point Designs. In floating-point design of the
FK step, we perform an exploration of different exponent and
mantissa bit widths. Similar to fixed-point designs, we use a
uniform bit width for all the variables. When we investigate
one of them, we keep the other one with a constant high
value.

Figure 7(b) shows the case that we change the exponent
bit width from 3 to 10, while we keep the mantissa bit width
as 24. There is again a clear cut at the bit width of 6. When
the exponent bit width is smaller than 6, the DI value of the
generated image is at the level of 105. When the exponent bit
width increases to 6, the DI value decreases to around 1.

With a similar exploration of the mantissa bit width,
we figure out that exponent bit width of 6 and mantissa
bit width of 16 provide the minimum bit widths needed to
achieve a DI value around 102. Experiment confirms that this
combination produces image with a DI value of 43.96.

4.4. Hardware Acceleration Results. The hardware acceler-
ation tool used in this project is the FPGA computing
platform MAX-1, provided by Maxeler Technologies [21].
It contains a high-performance Xilinx Virtex IV FX100

Table 4: Speedups achieved on FPGA compared to software
solutions. Xilinx Virtex IV FX100 FPGA compared with Intel Xeon
CPU of 1.86 GHz.

Size of dataset Software time FPGA time Speedup

43056 5.32 ms 0.84 ms 6.3

216504 26.1 ms 3.77 ms 6.9

Table 5: Resource cost of the FPGA design for the FK step in
downward continued-based migration.

Type of resource Used units Percentage

Slices 12032 28%

BRAMs 59 15%

Embedded multipliers 16 10%

FPGA, which consists of 42176 slices, 376 BRAMs, and
192 embedded multipliers. Meanwhile, it provides a high-
bandwidth interface of PCI Express X8 (2 G bytes per
second) to the software side residing in CPUs.

Based on the exploration results of different number
representations, the fixed-point design with bit widths of 12,
16, and 16 for three different parts is selected in our hardware
implementation. The design produces images containing
the same pattern as the double-precision floating-point
implementation, and has the smallest bit-width values, that
is, the lowest resource cost among all the different number
representations.

Table 4 shows the speedups we can achieve on FPGA
compared to software solutions running on Intel Xeon CPU
of 1.86 GHz. We experiment with two different sizes of
datasets. For each of the datasets, we record the processing
time for 10 000 times and calculate the average as the result.
Speedups of 6.3 and 6.9 times are achieved for the two
different datasets, respectively.

Table 5 shows the resource cost to implement the FK step
on the FPGA card. It utilizes 28% of the logic units, 15%
of the BRAMs (memory units) and 10% of the arithmetic
units. Considering that a large part (around 20%) of the used
logic units are circuits handling PCI-Express I/O, there is still
much potential to put more processing cores onto the FPGA
card and to gain even higher speedups.

5. Case Study II: 3D Convolution in
Reverse Time Migration

3D convolution is one of the major computation bottlenecks
in reverse time migration algorithms. In this paper, we imple-
mented a 6th-order acoustic modeling kernel to investigate
the potential speedups on FPGAs. The 3D convolution uses
a kernel with 19 elements. Once each line of the kernel has
been processed, it is scaled by a constant factor.

One of the key challenges to implement 3D convolution
is how to keep a fast access to all the data elements needed for
a 19-point operations. As the data items are generally stored
in one direction, when you want to access the data items in a
3D pattern, you need to either buffer a large amount of data
items or access them in a very slow nonlinear pattern. In our
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Figure 7: Exploration of fixed-point and floating-point designs with different bit widths.
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FPGA design, we solve this problem by buffering the current
block we process into the BRAM FIFOs. ASC provides a
convenient interface to automatically buffer the input values
into BRAMs and the users can access them by specifying the
cycle number that the value gets read in. Thus, we can easily
index into the stream to obtain values already sent to the
FPGA and perform the 3D operator.

Compared to the 3D convolution processed on CPUs,
FPGA has two major advantages. One is the capability
of performing computations in parallel. We exploit the
parallelism of the FPGA to calculate one result per cycle.
When ASC assigns the elements to BRAMs, it does so in
such a way as to maximize the number of elements that
can be obtained from the BRAM every cycle. This means
that consecutive elements of the kernel must not in general
be placed in the same BRAM. The other advantage is the
support for application-specific number representations. By
using fixed-point of 20 bits (the minimum bit-width setting
that provides acceptable accuracy), we can reduce the area
cost greatly thus put more processing units into the FPGA.

We test the convolution design on a data size of 700 ×
700 × 700. To compute the entire computation all at the
same time (as is the case when a high-performance processor
is used) requires a large local memory (in the case of the
processor, a large cache). The FPGA has limited resources
on-chip (376 BRAMs which can each hold 512 32 bit values).
To solve this problem, we break the large dataset into cubes
and process them separately. To utilize all of our input and
output bandwidths, we assign 3 processing cores to the FPGA
resulting in 3 inputs and 3 outputs per cycle at 125 MHz
(constrained by the throughput of the PCI-Express bus ).
This gives us a theoretical maximum throughput of 375 M
results a second.

The disadvantage of breaking the problem into smaller
blocks is that the boundaries of each block are essentially
wasted (although a minimal amount of reuse can occur)
because they must be resent when the adjacent block is
calculated. We do not consider this a problem since the
blocks we use are at least 100× 100× 700 which means only
a small proportion of the data is resent.

In software, the convolution executes in 11.2 seconds
on average. The experiment was carried out using a dual-
processor machine (each quad-core Intel Xeon 1.86 GHz)
with 8 GB of memory.

In hardware, using the MAX-1 platform we perform
the same computation in 2.2 seconds and obtain a 5 times
speedup. The design uses 48 DSP blocks (30%), 369 (98%)
RAMB16 blocks, and 30,571 (72%) of the slices on the
Virtex IV chip. This means that there is room on the chip to
substantially increase the kernel size. For a larger sized kernel
(31 points), the speedup should be virtually linear, resulting
in an 8 times speedup compared to the CPU implementation.

6. Further Potential Speedups

One of the major constraints for achieving higher speedups
on FPGAs is the limited bandwidth between the FPGA card
and the CPU. For the current PCI-Express interface provided
by the MAX-1 platform, in each cycle, we can only read

8 bytes into the FPGA card and write back 8 bytes to the
system.

An example is the implementation of the FK step,
described in Section 4. As shown in Algorithm 2, in our
current designs, we take step%kx, step%ky, and both the
real and imaginary parts of wfld as inputs to the circuit on
FPGA, and take the modified real and imaginary parts of
wfld as outputs. Therefore, although there is much space
on the FPGA card to support multiple cores, the interface
bandwidth can only support one single core and get a
speedup of around 7 times.

However, in the specific case of FK step, there are further
techniques we can utilize to gain some more speedups.
From the codes in Algorithm 2, we can find out that wfld
varies with all the four different loop indices, while step%kx
and step%ky only vary with two of the four loop indices.
To take advantage of this characteristic, we can divide the
processing of the loop into two parts: in the first part, we
use the bandwidth to read in the step%kx and step%ky
values, without doing any calculation; in the second part,
we can devote the bandwidth to read in wfld data only, and
start the processing as well. In this pattern, suppose we are
processing a 100 × 100 × 100 × 100 four-level loop, the
bandwidth can support two cores processing concurrently
while spending 1 out of 100 cycles to read in the step%kx
and step%ky values in advance. In this way, we are able
to achieve a speedup of 6.9 × 2 × 100/101 ≈ 13.7 times.
Furthermore, assume that there is an unlimited communi-
cation bandwidth, the cost of BRAMs (15%) becomes the
major constraint. We can then put 6 concurrent cores on
the FPGA card and achieve a speedup of 6.9 × 7 ≈ 48
times.

Another possibility is to put as much computation as
possible onto the FPGA card, and reduce the communication
cost between FPGA and CPU. If multiple portions of the
algorithm are performed on the FPGA without returning to
the CPU, the additional speedup can be considerable. For
instance, as mentioned in Section 2, the major computation
cost in downward continued-based migration lies in the
multidimensional FFTs and the FK step. If the FFT and the
FK step can reside simultaneously on the FPGA card, the
communication cost between the FFT and the FK step can
be eliminated completely. In the case of 3D convolution in
reverse time migration, multiple time steps can be applied
simultaneously.

7. Conclusions

This paper describes our work on accelerating seismic
applications by using customized number representations
on FPGAs. The focus is to improve the performance of the
FK step in downward continued-based migration and the
acoustic 3D convolution kernel in reverse time migration.
To investigate the tradeoff between precision and speed,
we develop a tool that performs an automated precision
exploration of different number formats, and figures out
the minimum precision that can still generate good enough
seismic results. By using the minimized number format,
we implement the FK step in forward continued-based
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migration and 3D convolution in reverse time migration
on FPGA and show speedups ranging from 5 to 7 by
including the transfer time to and from the processors. We
also show that there are further potentials to accelerate these
applications by above 10 or even 48 times.
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Recently, there has been a growing interest in femtocell net-
works both in academia and industry. They offer significant
advantages for next-generation broadband wireless commu-
nication systems. For example, they eliminate the dead-
spots in a macrocellular network. Moreover, due to short
communication distances (on the order of tens of meters),
they offer significantly better signal qualities compared to
the current cellular networks. This makes high-quality voice
communications and high data rate multimedia type of
applications possible in indoor environments.

However, this new type of technology also comes with its
own challenges, and there are significant technical problems
that need to be addressed for successful deployment and
operation of these networks. Standardization efforts related
to femtocell networks in 3GPP (e.g., under TSG-RAN
Working Group 4 and LTE-Advanced) and IEEE (e.g., under
IEEE 802.16m) are already underway.

The goal of this special issue is to solicit high-quality
unpublished research papers on design, evaluation, and
performance analysis of femtocell networks. Suitable topics
include but are not limited to the following:

• Downlink and uplink PHY/MAC design for femtocells
in 3G systems, WiMAX systems, and LTE systems

• Interference analysis, avoidance, and mitigation
• Coexistence between a macrocellular network and

femtocell network
• Resource allocation techniques
• Closed subscriber group (CSG) versus open-access

femtocells
• Power control and power saving mechanisms (e.g.,

sleep/idle mode etc.)
• Mobility support and handover
• Time synchronization
• Multiple antenna techniques
• Tradeoffs between femtocells, picocells, relay networks,

and antenna arrays
• Comparison with other fixed-mobile convergence

(FMC) approaches such as UMA/GAN and dual-mode
terminals

• Self-organizing networks and issues in self mainte-
nance and self install

• Issues related to enterprise femtocells

Before submission, authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/wcn/guidelines.html. Prospective au-
thors should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/, according to the following
timetable:

Manuscript Due September 1, 2009

First Round of Reviews December 1, 2009

Publication Date March 1, 2010

Lead Guest Editor

Ismail Guvenc, Wireless Access Laboratory, DOCOMO
Communications Laboratories USA, Inc., Palo Alto,
CA 94304, USA; iguvenc@docomolabs-usa.com

Guest Editors

Simon Saunders, Femto Forum, UK;
simon@femtoforum.org

Ozgur Oyman, Corporate Technology Group,
Intel Corporation, USA; ozgur.oyman@intel.com

Holger Claussen, Alcatel-Lucent Bell Labs, UK;
claussen@lucent.com

Alan Gatherer, Communications Infrastructure and Voice
Business Unit, Texas Instruments, USA; gatherer@ti.com
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