
Optimizing Residue Arithmetic on FPGAs

Haohuan Fu, Oskar Mencer, Wayne Luk

Department of Computing, Imperial College

London, United Kingdom

{hfu,oskar,wl}@doc.ic.ac.uk

Abstract

Residue Number System (RNS), which originates from

the Chinese Remainder Theorem, is regarded as a promis-

ing number representation in the domain of Digital Signal

Processing (DSP). This paper describes our work on op-

timizing residue arithmetic units on the platform of recon-

figurable devices, such as FPGAs. First, we provide im-

proved designs for residue arithmetic units. For reverse

converters from RNS to binary numbers, we propose a novel

design that uses only n-bit additions. Compared to previ-

ous work, the design consumes up to 14.3% less area and

provides lower latency. Second, we develop a reconfig-

urable RNS arithmetic library generator for the moduli set

{2n−1, 2n, 2n+1}. The generator supports a wide range of

RNS numbers, and enables us to perform an extensive com-

parison between RNS and other number representations at

both the arithmetic unit level and the application level. The

comparison shows that, for applications involving a large

number of multiplications, the RNS designs can reduce up

to 1/2 DSP48s for large bit-width settings.

1. Introduction

Dated back to the Chinese Remainder Theorem (CRT) in

the ancient Chinese Mathematic book “Sun Zi Suan Jing”

[1] (with a recent English translation in [2]), the theory be-

hind Residue Number System (RNS) has existed for over

hundreds of years. By decomposing one large number into

a number of small residue values, RNS greatly reduces the

carry chain length of adders and the size of multipliers.

Compared to conventional binary representations, RNS pro-

vides low latency in addition and multiplication, plus pos-

sible reduction in area and power consumption [3]. Due to

these special features, RNS is long regarded as a promising

number format in Digital Signal Processing (DSP) [4, 5].

However, RNS also has its inherent disadvantages when

compared to binary representations. As the residue val-

ues do not contain any magnitude information, comparison,

scaling and division are difficult. Conversions between bi-

nary and residue numbers are costly. These difficulties con-

strain the utilization of RNS to practical applications.

As a reconfigurable hardware device, FPGA is an ideal

platform to evaluate the RNS representations. There are ex-

isting work on implementing residue arithmetic on FPGAs

[6], and also research efforts that use RNS to implement

applications such as Intellectual Property Protection (IPP)

procedures [7] and RSA algorithm [8] on FPGAs. How-

ever, there still lacks a general support for RNS arithmetic.

To facilitate further investigations on the potential of

RNS in different applications, we work on improving the

arithmetic designs of RNS numbers, and developing an op-

timized RNS arithmetic library generator that targets the

FPGA platform. The optimized arithmetic library genera-

tor enables a fast prototyping of efficient RNS designs. By

studying the tradeoffs between RNS and other number rep-

resentations, we can apply RNS to suitable applications to

achieve improvement in performance and precision or re-

duction in resource consumption.

Our major contributions are:

1. improvement of RNS arithmetic on FPGAs. For re-

verse converters from RNS to binary numbers, we pro-

pose a novel design which consumes up to 14.3% less

area and provides lower latency than previous work

[9]. The forward converter are implemented with sim-

ple modular additions. We also provide simplified

solutions for specific cases of scaling and magnitude

comparison operations.

2. an RNS arithmetic library generator for the moduli set

{2n − 1, 2n, 2n + 1}. We keep n as a reconfigurable

parameters, so that the generator supports a wide range

of RNS numbers.

3. significant resource reduction by using RNS for multi-

plications. We can fit more multipliers into one FPGA.

Using the library generator, we perform an extensive

comparison between RNS and other number representations

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1



on both arithmetic units and benchmarks. The comparison

shows that, the major advantage of RNS lies in the reduc-

tion of resources in multiplication operations. In applica-

tions that involves a large number of multiplications, the

RNS representation can reduce up to 1/2 DSP48s for large

bit-widths, thus fit more designs into the FPGA device.

2. Background

2.1. RNS Notations

MS = {M1, M2, · · ·Mn} is the moduli set which con-

tains n different moduli that are pairwise co-prime to each

other. The representation range of the moduli set is M =
M1 ·M2 · · ·Mn. A number X in the range of [0, M−1] can

be represented by {x1, x2, · · ·xn}, where xi is the residue

value of X mod Mi, denoted as |X |Mi
. For the cases that

we need to represent negative values, the range becomes

[−M/2, M/2− 1]. For the convenience of discussions, we

also define Si as Si =
∏n

j 6=i Mj = M/Mi, and the value

|x−1|M as the multiplicative inverse of |x|M that satisfies
∣

∣|x−1|M · x
∣

∣

M
= 1.

2.2. Selection of Moduli Set

In our work, we choose to use the moduli set {2n −
1, 2n, 2n + 1} for the following reasons: firstly, it provides

simpler designs for converters and magnitude-related op-

erations, thus is more possible to provide efficient designs

for common applications; secondly, although power-of-two

moduli set can not use the index calculus approach to imple-

ment efficient multipliers [10], we can utilize the dedicated

hardware multipliers on FPGA platforms to implement mul-

tiplications with acceptable cost; thirdly, as it is the most

commonly used one in previous work, using this moduli set

makes our work applicable to most existing designs.

2.3. Previous Work on RNS Arithmetic

Forward converter

As most existing devices and applications use binary rep-

resentations, such as fixed-point or floating-point numbers,

the first part of an RNS design is usually a converter that

converts binary numbers into the residue form, usually de-

noted as forward converter or residue generator.

The early efforts [11, 12] on forward converters decom-

pose the binary value into an array of power-of-two values,

compute the residue of each power-of-two value, and sum

them up with modular adders. The basic idea is as fol-

lows: assume rji = |2j|Mi
, where 0 ≤ j ≤ n − 1, and

X =
n−1
∑

i=0

bi · 2i. The residue xi can then be processed as

xi = |
∑

j:bj=1

rji|Mi
.

Based on the above approach, S. Piestrak [13] proposes

the concept of periodic properties of modular operations in

his converter designs. Based on the periodic property, the

input bits can be divided into a number of groups and han-

dled similarly, which greatly simplify the design.

Reverse converter

Compared to the forward converter, the reverse converter

(converts RNS numbers back into binary form, also referred

to as RNS decoder) is more complicated and costs more

resources to implement.

The earliest algorithm of reverse conversion dates back

to the Chinese Remainder Theorem (CRT), which is pro-

posed by an ancient Chinese mathematician Tzu Sun [1, 2].

The idea of CRT can be illustrated as equation (1). Mul-

tiplicative inverse values are used to reconstruct the binary

value from residue values.

Y. Wang proposes another reverse conversion algorithm

which he names as the New Chinese Remainder Theorems

[14]. This algorithm calculates the binary value as shown

in equation (2). Similar ideas are proposed for conver-

sion from RNS numbers to Mixed-Radix (MR) represen-

tations [15]. Applying this algorithm to the moduli set

{2n − 1, 2n, 2n + 1}, Y. Wang provides an adder-based re-

verse converter [9], which is one of the most efficient re-

verse converter design for this moduli set.

Magnitude Comparison

The most straightforward way of magnitude comparison

is to reverse-convert the residue representation into binary

representation (or Mixed-Radix (MR) representations) and

perform the comparison.

There are also other methods to derive a monotonic

growing function from the residue values. Based on the ob-

servation of a “diagonal function” in the sequence of RNS

numbers, G. Dimauro et. al. [16] propose a function that

use residue values and an extra modulus to compute a value

that grows monotonically with the magnitude of RNS num-

bers. However, the computation of the “diagonal” value still

involves costly multiplication and modular operations.

3. Design of RNS Arithmetic Units

As noted in section 2.2, in order to reduce the complexity

of certain RNS arithmetic units and make the representation

more applicable to common applications, we select the most

commonly-used moduli set {2n−1, 2n, 2n +1} in our RNS

arithmetic design. In the following sections, we show in de-

tails how this moduli set simplifies the design of arithmetic

units, such as converters between binary and RNS numbers,

scaling operator and comparison operator.

2



X = {x1, x2, · · · , xn} = |{x1, 0, 0, · · · , 0} + {0, x2, 0, · · · , 0} + · · · + {0, 0, · · · , xn}|M

=
∣

∣x1 · |S
−1

1 |M1
· S1 + x2 · |S

−1

2 |M2
· S2 + · · · + xn · |S−1

n |Mn
· Sn

∣

∣

M
=

∣

∣

n
∑

i=1

(|S−1

i |Mi
· Si · xi)

∣

∣

M
(1)

X = |x1 + k1M1(x2 − x1) + k2M1M2(x3 − x2) + · · · + kn−1M1M2 · · ·Mn−1(xn − xn−1)|M1M2···Mn−1Mn

where |k1M1|M2···Mn
= 1, |k2M1M2|M3···Mn

= 1, · · · , |kn−1M1 · · ·Mn−1|Mn
= 1 (2)

3.1. Forward Converter

The previous designs of forward converters (detailed in

section 2.3) breaks the binary number into bits, and calcu-

late the residue values of each bit separately. In our design,

as we use the specific moduli set {2n − 1, 2n, 2n + 1}, the

generation of the residue values is greatly simplified.

The representation range of the moduli set {2n −
1, 2n, 2n + 1} is 23n − 2n, which corresponds to binary

numbers with 3n bits. If we divide the 3n bits into three

groups of n bits and denote each group with A, B, and C
respectively, then the binary number X can be expressed as

X = A · 22n + B · 2n + C. The residue values of the three

moduli can then calculated as follows:

x1 = |A · 22n + B · 2n + C|2n
−1

= |A · (2n − 1)(2n + 1) + A + B · (2n − 1) + B + C|2n
−1

= |A + B + C|2n
−1 (3)

x2 = |A · 22n + B · 2n + C|2n = C (4)

x3 = |A · 22n + B · 2n + C|2n+1

= |A · (2n − 1)(2n + 1) + A + B · (2n + 1) − B + C|2n+1

= |A − B + C|2n+1 (5)

Therefore, the forward converter of this moduli set can

be easily implemented through modular adders. For all the

FPGA designs in this paper and our RNS arithmetic library,

we use A Stream Compiler (ASC) [17] as the hardware

compiler that maps the design into FPGA implementations.

ASC is a high-level FPGA programming tool using C++

alike syntax. The compiler works as an add-on library to the

standard C++ compilers, and supports hardware data-types,

such as integer, fixed-point and floating-point number, with

configurable bit-widths. In our experiments, all the designs

are targeted on the Xilinx Virtex IV FX100 FPGA board

. Table 1 shows the area cost and latency of RNS forward

converters with typical bit-width settings.

3.2. Reverse Converter

As mentioned in section 2.3, the previous reverse con-

verter designs are based on the CRT or the new CRT by Y.

Table 1. RNS Forward Converters: area cost

and latency for different n values (the

moduli set we use is {2n − 1, 2n, 2n + 1}).

value of n 4 8 12 16 20

area cost / # slices 113 186 236 318 392

latency / ns 14.2 17.2 18.7 19.7 22.4

Wang [14], and usually involve multiplications or at least

2n-bit modular additions. In our design, we try to acquire

the binary value with only n-bit adders.

We describe our algorithm based on using the same A,

B, C denotations as in section 3.1. As A, B, C are all

values in the range of [0, 2n − 1], the equations for forward

conversion ((3), (4), (5)) can be converted as follows (as

noted in section 2.1, we denote three moduli values as M1,

M2, and M3):

A + B + C = x1 + c1 · M1, where c1 ∈ {0, 1, 2} (6)

C = x2 (7)

A − B + C = x3 + c2 · M3, where c2 ∈ {−1, 0, 1} (8)

Altogether, c1 and c2 have nine different combinations.

However, given one set of residue values {x1, x2, x3},

there is always only one valid combination of c1 and c2,

as the above equations include hidden constraints among

x1, x2, x3 and c1, c2 values. The first kind of constraints is

about the parity of the numbers. As A+B+C and A−B+C
have the same parity, if x1 and x3 also have the same parity,

then c1 and c2 shall have the same parity. Otherwise, if x1

and x3 have different parities, then c1 and c2 shall have dif-

ferent parities. The second kind of constraints relate to the

range of the values. We can derive the expressions of 2A
and 2B from the above equations (6), (7), and (8). As 2A
and 2B shall both be in the range of [0, 2n+1 − 2], we can

derive another set of equations regarding the relationship

between x1, x2, x3 and c1, c2.

Applying all the above hidden constraints in the equa-

tions (6), (7), and (8), we can acquire a full set of complete

3



Table 2. Conditions for selecting valid c1 and
c2 values. For each different c1 or c2 value, the

multiple rows on the right describes the cor-

responding cases that the value is valid, i.e.
if the xi values satisfy any of the rows on the

right, c1 or c2 are determined to be the value

on the left. ‘SAME’ and ‘DIFF’ denote that x1

and x3 have the same or different parity.

x1 ≥ x3 & x1 + x3 ≥ 2 · x2 & SAME
c1 = 0

x1 + x3 ≥ 2 · x2 + M3 & DIFF

x1 < x3 & x1 + x3 ≤ 2 · x2 & SAME
c1 = 2

x1 + x3 ≤ 2 · x2 − M3 & DIFF

c1 = 1 all other cases

x1 < x3 & x1 + x3 > 2 · x2 & SAME
c2 = −1

x1 + x3 ≥ 2 · x2 + M3 & DIFF

x1 ≥ x3 & x1 + x3 > 2 · x2 & SAME
c2 = 1

x1 + x3 ≤ 2 · x2 − M3 & DIFF

c2 = 0 all other cases

conditions that correspond to different combinations of c1

and c2 values, as shown in Table 2.

Applying the above conditions, we can determine the

values of c1 and c2 according to residue values {x1, x2, x3}.

As C equals to the value of x2, we can then calculate the

values A and B from the values of A+B+C and A−B+C.

As shown in Figure 1, we implement the above reverse

conversion algorithm as a circuit structure with two major

parts. The first part is the condition decoder that takes the

residue values {x1, x2, x3} as input, compare all the differ-

ent value combinations as shown in Table 2, and figure out

the correct coefficients c1 and c2. The second part is the

binary generator that uses the coefficients c1 and c2 to con-

struct the A and B parts. As part C comes from the value

of x2, we can combine them to produce the binary result.

To evaluate the cost and performance, we implement the

reverse converter design on FPGAs with different n values

(the n value in the moduli set {2n − 1, 2n, 2n + 1}), and

compare the experiment results with the design by Wang

et. al. [9], which is one of the most efficient existing de-

signs for the {2n − 1, 2n, 2n + 1} moduli set. As shown in

Fig. 2, compared to Wang’s design, our reverse converters

consume 7.7% to 14.3% less area on FPGAs. Our design

consumes 7.7% for the case of n = 4, and consumes 14.3%

less area for the case of n = 20. Thus, our reduction in

area cost increases with the size of the moduli set. On the

latency side, our design also takes less time to produce the

output from the input values in most cases.

x1 x2 x3residue form:

condition 

decoder

binary generator

c1

c2

A B Cbinary form:

Figure 1. General structure of our reverse

converter.

3.3. Addition and Multiplication

RNS’s advantage in addition and multiplication comes

from the following property:

|a + b|M =
∣

∣ |a|M + |b|M
∣

∣

M
(9)

|a ∗ b|M =
∣

∣ |a|M ∗ |b|M
∣

∣

M
(10)

Thus, to add or multiply two RNS numbers {x1, x2, x3}
and {y1, y2, y3}, we only need to add or multiply the cor-

responding value pairs xi and yi. When implementing the

adders and multipliers, we can apply the same techniques

for binary adders and multipliers, such as carry-save adders

and Booth’s multiplication algorithms [18]. However, as

our arithmetic library targets the FPGA platforms, we use

the adder and multiplier cores provided by ASC [17] di-

rectly.

4. Comparing RNS and Integer Arithmetic

Units

The previous section describes the algorithm design of

the major units in our RNS arithmetic library. By imple-

menting the designs using ASC syntax descriptions, we de-

velop a generator for RNS arithmetic libraries. The gen-

erator provides arithmetic units for the moduli set {2n −
1, 2n, 2n + 1}, and takes n as an input parameter that the

users can configure.

Combining this library generator and ASC, we have a

tool that can automatically generate RNS arithmetic units

for different bit-width, and evaluate the area cost and la-

tency of the units. To compare RNS and common binary

representations, we perform a comparison between RNS

and integer arithmetic units with different bit-width settings.

4



4 6 8 10 12 14 16 18 20
100

150

200

250

300

350

400

450

500

550

Variation of value n (the moduli we use is 2
n
−1, 2

n
, 2

n
+1).

A
re

a
 C

o
s
t 
/ 
#
s
lic

e
s

Wang et. al. [9], #slices

Our design, #slices

(a) Comparison of area cost.

4 6 8 10 12 14 16 18 20
17

18

19

20

21

22

23

24

25

Variation of value n (the moduli we use is 2
n
−1, 2

n
, 2

n
+1).

L
a
te

n
c
y
 /
 n

s

Wang et. al. [9], latency

Our design, latency

(b) Comparison of latency.

Figure 2. Comparing our reverse converter and the design in [9]: area cost and latency.

Figure 3 shows the comparison between RNS and inte-

ger adders. We compare RNS operations for the moduli set

{2n − 1, 2n, 2n + 1} to 3n-bit integer operations, as they

have a similar representation range.

The area cost of both RNS and integer adders increase al-

most linearly to the bit-width of operands. The RNS adders

consume around 50 slices more than the integer adders. The

integer adder performs a 3n-bit addition, while the RNS

adder performs three n-bit additions separately. However,

the RNS adder also needs to perform a modular operation

after the addition, which incurs more area consumption. On

the latency side, the RNS adders also do not show the ex-

pected advantage. This is mainly because the adders are

implemented on the FPGA with fast-carry chains, which

greatly reduce the latency difference between the carry

chain of a 3n-bit adder and the carry chain of a n-bit adder.

Meanwhile, the extra modular step of RNS adders introduce

more latency. Thus, in most cases, the RNS adders show a

higher latency than integer adders. Only when the value n
increases to 18, which corresponds to integers over 54 bits,

the short carry chain of RNS starts to outweigh the extra la-

tency of the modular step, and the RNS adders show a lower

latency than the integer adders.

As RNS multiplier is quite different from integer multi-

plier, it is not clear how to perform an unbiased comparison

of the multipliers of the two different number systems. RNS

multiplications are bounded by the range of the moduli, i.e.

the multiplication of two 3n-bit values only produce a 3n-bit

result. For integers, the multiplication of two 3n-bit values

produce a 6n-bit result. In our comparison, we try to make

the computation complexity in the two number systems as

equivalent as possible. Thus, we reduce the the multiplica-

tion of two 3n-bit integers into a partial multiplication that

only produces to output the lower 3n bits as the result. The

same reduction to integer or fixed-point multipliers is per-

formed in the case studies in Section 5.

Figure 4 shows the comparison between RNS and integer

multipliers. The multipliers can be implemented using only

logic slices, or using both logic slices and DSP48s.

When using only logic slices, the area consumption for

integer and RNS multipliers are similar. For bit-widths

smaller than 10, RNS multiplier consumes more area due to

the extra modular operations to the results. For bit-widths

larger than 10, RNS multipliers start to bring area reduc-

tions. However, the latency of RNS multipliers are higher

than integer multipliers, which is also because of the mod-

ular operation needed after the multiplication.

When using both logic slices and DSP48s, the RNS mul-

tipliers consume 50 to 200 more slices than integer multi-

pliers, but the number of DSP48s is reduced greatly. For

large bit-width (n = 12, 14, 16), the RNS multipliers only

consume 1/2 of the number of DSP48s consumed by inte-

ger multipliers. When using DSP48s, the latency of RNS

multipliers are still higher than integer multipliers.

The comparison results show that the major advantage

of RNS lies in the reduction of resource consumptions for

multipliers. Because of the extra modular operations after

addition, RNS adders consume slightly more area than inte-

ger adders. For similar reasons, RNS adders and multipliers

also show a higher latency than integer units. For large bit-

widths, RNS adders produce a similar or even lower latency.

5. Evaluating RNS on Practical Benchmarks

5.1. 2 by 2 Matrix Multiplication: RNS ver-
sus Integer

We compare the RNS designs and integer designs for a 2

by 2 matrix multiplication processing core. As we focus on

the area cost and latency of the processing core itself, the

5



4 6 8 10 12 14 16 18 20
50

100

150

200

250

300

Variation of value n (the moduli we use is 2
n
−1, 2

n
, 2

n
+1).

Corresponding to integers with 3n bits.

A
re

a
 C

o
s
t 
/ 
#
 s

lic
e
s

int ADD

RNS ADD

(a) Comparison of area cost.

4 6 8 10 12 14 16 18 20
3

4

5

6

7

8

9

10

Variation of value n (the moduli we use is 2
n
−1, 2

n
, 2

n
+1).

Corresponding to integers with 3n bits.

L
a
te

n
c
y
 /
 n

s

int ADD

RNS ADD

(b) Comparison of latency.

Figure 3. RNS adders versus integer adders: comparison of area cost and latency.

4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

Variation of value n (the moduli we use is 2
n
−1, 2

n
, 2

n
+1).

Corresponding to integers with 3n bits.

A
re

a
 C

o
s
t 
/ 
#
 s

lic
e
s

int MUL

RNS MUL

(a) Comparison of area cost, using slices only.

4 6 8 10 12 14 16 18 20
50

100

150

200

250

300

350

Variation of value n (the moduli we use is 2
n
−1, 2

n
, 2

n
+1).

Corresponding to integers with 3n bits.

A
re

a
 C

o
s
t 
/ 
#
s
lic

e
s

int MUL #slices

RNS MUL #slices

4 6 8 10 12 14 16 18 20

1

2

3

4

5

6

7

8

9

10

A
re

a
 C

o
s
t 
/ 
#
D

S
P

4
8

int MUL #DSP48

RNS MUL #DSP48

(b) Comparison of area cost, using slices and DSP48s.

4 6 8 10 12 14 16 18 20
8

10

12

14

16

18

20

22

24

Variation of value n (the moduli we use is 2
n
−1, 2

n
, 2

n
+1).

Corresponding to integers with 3n bits.

L
a
te

n
c
y
 /
 n

s

int MUL

RNS MUL

(c) Comparison of latency, using slices only.

4 6 8 10 12 14 16 18 20
8

10

12

14

16

18

20

22

Variation of value n (the moduli we use is 2
n
−1, 2

n
, 2

n
+1).

Corresponding to integers with 3n bits.

L
a
te

n
c
y
 /
 n

s

int MUL

RNS MUL

(d) Comparison of latency, using slices and DSP48s.

Figure 4. RNS multipliers versus integer multipliers: comparison of area cost and latency. The RNS
multipliers can save up to 100 slices or 50% DSP48s for large bit-width settings.

6



4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

Variation of value n (the moduli we use is 2
n
−1, 2

n
, 2

n
+1).

Corresponding to integers with 3n bits.

A
re

a
 C

o
s
t 
/ 
#
s
lic

e
s

int #slices

RNS #slices

4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

60

70

80

90

A
re

a
 C

o
s
t 
/ 
#
D

S
P

4
8

int #DSP48

RNS #DSP48

(a) Comparison of area cost, using slices and DSP48s.

4 6 8 10 12 14 16 18 20
10

15

20

25

30

35

Variation of value n (the moduli we use is 2
n
−1, 2

n
, 2

n
+1).

Corresponding to integers with 3n bits.

L
a
te

n
c
y
 /
 #

 n
s

int

RNS

(b) Comparison of latency.

Figure 5. 2 by 2 matrix multiplication: comparison of area cost and latency between RNS and integer

designs.

conversions between RNS and binary forms are not consid-

ered.

The processing core consists of 8 multiplications and

4 additions. As shown in Figure 5, the consumption of

DSP48s is greatly reduced in RNS designs. For the cases

that n = 12, 14, 16, the RNS designs consume only 1/2

DSP48s of the integer designs. Similarly, for the cases that

n = 12, 14, 16, the RNS designs provide a similar latency to

integer designs. As there are far less DSP48s involved in the

design, the critical path is reduced. In the other cases, the la-

tency introduced in the extra modular operations outweighs

the reduced portion in DSP48s, the RNS designs show a

higher latency. The RNS designs also consume around 500

to 1000 extra slices than integer designs due to the extra

modular operations.

5.2. FIR Filter: RNS versus Fixed-point

In the second case study, we compare RNS and fixed-

point representation in a 11-tap Finite Impulse Response

(FIR) filter design. The computation involves 11 multiplica-

tions and 10 additions. We assume that the input and output

values are in the form of fixed-point, thus forward and re-

verse converters are included in the RNS design. DSP48s

are used for multipliers.

As shown in Figure 6, the usage of DSP48s is again

greatly reduced for large bit-width cases. In RNS designs,

the number of consumed DSP48s is reduced by 1/2 when

n = 12, 14, 16. However, due to the converters added into

the design and the extra modular operations, the RNS de-

signs consume around 2000 more slices and show a much

higher latency.

In this specific case, we implement the design on a Vir-

tex IV FX100 FPGA, which consists of 42176 slices and

192 DSP48s. By using RNS representation, we can cut the

number of DSP48s down to 1/2 for large bit-width cases

(n = 12, 14, 16), and fit 5 copies of the same design into

one FPGA, while the fixed-point version can only support 2

copies in one FPGA. On the other hand, we can also have

more taps in the RNS design to produce a better FIR filter.

6. Conclusion

This paper optimizes RNS arithmetic designs on the plat-

form of reconfigurable devices, such as FPGAs. In partic-

ular, we propose a novel design for reverse converters from

RNS to binary numbers, which consumes up to 14.3% less

area and provides lower latency. Based on the optimized

RNS arithmetic units, we develop an RNS arithmetic li-

brary generator for the moduli set {2n − 1, 2n, 2n + 1}.

The generator takes the value n as a configurable parameter

and supports a wide range of RNS numbers. This library

generator enables us to perform an extensive comparison

between RNS and other number representations at both the

arithmetic unit level and the application level. The com-

parison shows that, the major advantage of RNS lies in the

reduction of resources in multiplication operations. In ap-

plications that involves a large number of multiplications,

the RNS representation can reduce up to 1/2 DSP48s for

large bit-widths, thus fit more designs into the FPGA.

References

[1] T. Sun, Sun Zi Suan Jing (The Mathematical Classic by Sun

Zi), around 400 AD.

7



4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

3500

Variation of value n (the moduli we use is 2
n
−1, 2

n
, 2

n
+1).

Corresponding to fixed−point numbers with 3n bits.

A
re

a
 C

o
s
t 
/ 
#
s
lic

e
s

fixed−point #slices

RNS #slices

4 6 8 10 12 14 16

10

20

30

40

50

60

70

A
re

a
 C

o
s
t 
/ 
#
D

S
P

4
8fixed−point #DSP48

RNS #DSP48

(a) Comparison of area cost.

4 6 8 10 12 14 16
20

40

60

80

100

120

Variation of value n (the moduli we use is 2
n
−1, 2

n
, 2

n
+1).

Corresponding to fixed−point nubmers with 3n bits.

L
a
te

n
c
y
 /
 #

 n
s

fixed−point

RNS

(b) Comparison of latency.

Figure 6. 11-tap FIR filter: comparison of area cost and latency between RNS and fixed-point designs.

[2] L. R. Lam and T. S. Ang, Fleeting Footsteps: Tracing the

Conception of Arithmetic and Algebra in Ancient China.

World Scientific Publishing Company, 2004.

[3] G. Cardarilli, A. D. Re, A. Nannarelli, and M. Re, “Low-

Power Implementation of Polyphase Filters in Quadratic

Residue Number System,” in Proc. IEEE International Sym-

posium on Circuits and Systems, 2004, pp. 725–728.

[4] M. Mahesh and M. Mehendale, “Improving Performance

of High Precision Signal Processing Algorithms on Pro-

grammable DSPs,” in Proc. IEEE International Symposium

on Circuits and Systems, 1999, pp. 488–491.

[5] R. Charles and L. Sousa, “RDSP: A RISC DSP Based on

Residue Number System,” in Proc. Euromicro Symposium

on Digital System Design, 2003, pp. 128–135.

[6] T. Tomczak, “Optimizing Residue Arithmetic on FPGAs,”

in Proc. International Conference on Dependability of Com-

puter Systems, 2006, pp. 297–305.

[7] L. Parrilla, E. Castillo, A. Garcia, and A. Lloris, “Intellectual

Property Protection for RNS Circuits on FPGAs,” in Proc.

FPL, 2004, pp. 1139–1141.

[8] M. Ciet, M. Neve, E. Peeters, and J.-J. Quisquater, “Parallel

FPGA Implementation of RSA with Residue Number Sys-

tems,” in Proc. 46th IEEE International Midwest Symposium

on Circuits and Systems, 2003, pp. 806–810.

[9] Y. Wang, X. Song, M. Aboulhamid, and H. Shen, “Adder

Based Residue to Binary Number Converters for (2n

−

1, 2n, 2n + 1),” IEEE Trans. Signal Processing, pp. 1772–

1779, 2002.

[10] A. Garcia and A. Lloris, “RNS Scaling based on Pipelined

Multipiers for Prime Moduli,” in Proc. IEEE Workshop on

Signal Processing Systems, 1998, pp. 459–468.

[11] G. Alia and E. Martinelli, “A VLSI Algorithm for Direct and

Reverse Conversion from Weighted Binary NUmber System

to Residue Number System,” IEEE Trans. Circuits Syst., pp.

1033–1039, 1984.

[12] R. Capocelli and R. Giancarlo, “Efficient VLSI Networks for

Converting an Integer from Binary System to Residue Num-

ber System and Vice Versa,” IEEE Trans. Circuits Syst., pp.

1425–1430, 1988.

[13] S. Piestrak, “Design of Residue Generators and Multi-

operand Modular Adders Using Carry-Save Adders,” IEEE

Trans. Comput., pp. 68–77, 1994.

[14] Y. Wang, “New Chinese Remainder Theorems,” in Proc.

32nd Asilomar Conference on Signals, Systems and Com-

puters, 1998, pp. 165–171.

[15] C. Huang, “A Fully Parallel Mixed-Radix Conversion Algo-

rithm for Residue Number Applications,” IEEE Trans. Com-

put., pp. 398–402, 1983.

[16] G. Dimauro, S. Impedovo, and G. Pirlo, “A New Technique

for Fast Number Comparison in the Residue Number Sys-

tem,” IEEE Trans. Comput., pp. 608–612, 1993.

[17] O. Mencer, “ASC, A Stream Compiler for Computing with

FPGAs,” IEEE Trans. Computer-Aided Design, vol. 25,

no. 9, pp. 1603–1617, Sept. 2006.

[18] M. Flynn and S. Oberman, Advanced Computer Arithmetic

Design. Wiley-Interscience, 2001.

8


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Links to Other Manuscripts by the Authors
	------------------------------
	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
	------------------------------

