
AUTOMATIC ACCURACY-GUARANTEED BIT-WIDTH OPTIMIZATION
FOR FIXED AND FLOATING-POINT SYSTEMS

W.G. Osborne, R.C.C. Cheung, J.G.F. Coutinho, W. Luk, O. Mencer

Department of Computing
Imperial College

London, United Kingdom
email: {wgo, rcheung, jgfc, w.luk, o.mencer}@imperial.ac.uk

ABSTRACT
In this paper we present Minibit+, an approach that opti-
mizes the bit-widths of fixed-point and floating-point de-
signs, while guaranteeing accuracy. Our approach adopts
different levels of analysis giving the designer the opportu-
nity to terminate it at any stage to obtain a result. Range
analysis is achieved using a combined affine and interval
arithmetic approach to reduce the number of bits. Preci-
sion analysis involves a coarse-grain and fine-grain analy-
sis. The best representation, in fixed-point or floating-point,
for the numbers is then chosen based on the range, precision
and latency. Three case studies are used: discrete cosine
transform, B–Splines and RGB to YCbCr color conversion.
Our analysis can run over 200 times faster than current ap-
proaches to this problem while producing more accurate re-
sults, on average within 2–3% of an exhaustive search.

1. INTRODUCTION

In a hardware design, the representation and width of the
numbers must be chosen carefully to reduce the area and
increase the speed. The problem is that it is often better
to combine different representations. Given that most pro-
grams use 32-bit (or more) values with a range and a pre-
cision, the problem of selecting the best representation for
each number becomes intractable. The problem is NP–Hard
[1] so the search space cannot be completely covered. To
guide the search, heuristics are used to produce near-optimal
results, while trying to avoid local minima.

There are two methods of bit-width analysis. The first
is a simulation-based approach [2, 3, 4] and involves opti-
mizing the widths given input data from a specific training
set. This has the obvious difficulty of choosing the training
set, and the simulation is not guaranteed to produce results
within the error requirement for every input. The second ap-
proach calculates the precisions based on errors [5] (rather

The support of FP6 hArtes (Holistic Approach to Reconfigurable Real
Time Embedded Systems) project, Celoxica and Xilinx is gratefully ac-
knowledged.

than a set of numbers). The disadvantage of this approach is
that it can over-estimate in places.

The algorithms we focus on are multimedia-based and
designed in C/C++. Due to the size of the search space,
both methods can be time-consuming; we therefore try to
produce a faster method of solving the problem.

The main contributions of this paper are:

1. A combined interval and affine arithmetic approach to
optimize the ranges of numbers (Section 4.1 and 4.2).

2. Analytical models of cost (in terms of area, speed or
power consumption), error and latency are used to op-
timize the precisions for the signals and registers us-
ing an incremental approach (Section 5).

3. A speed improvement of the algorithm over other ap-
proaches.

2. BACKGROUND AND RELATED WORK

2.1. Background

The problem of number representation can be split into two
parts. The first concerns the ranges of the numbers, the sec-
ond the precisions. Range analysis can be performed by
taking the input ranges and performing operations on those
ranges until the outputs are reached. Precision analysis is
more complicated because it can depend on both range and
precision information.

Range and precision analysis can be performed statically
or dynamically. Static approaches [4, 5] tend to be faster, but
can over-estimate the result while dynamic analysis [2, 3]
does not usually guarantee the results because it depends on
the specific data in the training set.

2.2. Related Work

Kum et al. [2] group signals together to optimize the preci-
sions and ranges of variables, which may limit the scope for
optimization.

Abdul Gaffer et al. [3] use an approach called automatic
differentiation which involves analyzing at the signals at dif-
ferent times and determining the width. Although this ap-
proach tends to be less time-consuming, neither approach is
guaranteed to produce correct results for a given input out-
side the training set.

Roy and Banerjee [4] use a simple algorithm based on
reducing bit-widths but do not use affine arithmetic to opti-
mize the ranges. Since this is a simulation-based approach it
does not ensure accuracy. It can be time-consuming because
bit-widths are only increased at the end of the algorithm.

Lee et al. have developed a system called Minibit [5].
This uses static analysis to produce accuracy-guaranteed re-
sults. However, it only covers fixed-point representations,
and is time-consuming even for small designs due to the
Simulated Annealing approach.

Our approach builds on the ideas presented in Minibit
and focuses on speeding up the process while also reducing
the area of the final design. We automate the process, pro-
ducing results more quickly than [4] and [5]. In our applica-
tion domain it is essential that the results are always correct
so we use constraints given by the developer to refine the
width if needed. We use a partitioned iterative reduction to
calculate near-optimal results very quickly.

3. METHODOLOGY

An overview of the system can be seen in Fig. 1. The design-
flow starts with range analysis (Section 4), followed by the
generation of cost and error functions. There are two types
of error function, simulation and accuracy-guaranteed.

The accuracy-guaranteed function ensures that the accu-
racy cannot fall below the requirement by assuming a worst
case. This works by assuming that the error caused by each
input is 2−precision(x), where x is the position of the vari-
able in the array. For example, y = a× b would result in the
following error function for y:

yerror = 2−precision(y) + (aerror × bmax range) +
(berror × amax range) + (aerror × berror).

On the other hand the simulation approach ensures that
the values that are input do not break the error requirement.
The system is not guaranteed to work in every situation since
not all values are tried and the approach relies heavily on a
good training set, which is application-specific. The advan-
tage is that the bit-widths are greatly reduced because it does
not test for the worst case.

The next stage is precision analysis. A coarse-grain anal-
ysis is done first to produce uniform bit-widths (Section 5.1).
These results are then refined to produce non-uniform bit-
widths (Section 5.2). Floating-point scheduling is the last

C/C++ Program

Word-length Optimized Fixed/

Floating-Point Design

Guaranteed-Error

Function

Generation
(Section 3)

Cost Table

Generation

Simulation-Error

Function Generation
(Section 3)

Range

Optimization
(Section 4)

Coarse Precision

Analysis
(Section 5.1)

Fine Precision

Analysis
(Section 5.2)

Scheduling

Floating-point units
(Section 5.4)

Partitioning
(Section 5.3)

Error function

Selection

Fig. 1. An outline of the methodology used.

stage to take place (Section 5.4) before the source code is
reconstructed to an annotated C/C++ design.

4. RANGE ANALYSIS

For a number representation to be optimal, it must contain
enough bits to store all possible numbers required and no
more; this is what interval and affine arithmetic are designed
to optimize. The range analysis stage in our system com-
bines interval and affine arithmetic because both methods
can overestimate the range in different situations. As shown
in Section 4.1, x̄ − x̄ does not equal zero (where x̄ repre-
sents the interval of x) using interval arithmetic, whereas
it does if you use affine arithmetic. Affine arithmetic has
problems as well. When calculating the square root of a
number, the range is wider than interval arithmetic due to a
hidden non-linear dependency on one of the noise variables
[6]. Our system takes the narrowest range calculated by the
two methods at each stage.

4.1. Interval Arithmetic

Interval arithmetic [7] is simpler than affine arithmetic and
has the following rules:

[a, b] + [c, d] = [a + c, b + d],
[a, b]− [c, d] = [a− d, b− c],
[a, b]× [c, d] = [min(ac, ad, bc, bd),

max(ac, ad, bc, bd)].

An example of a possible problem of this method is: x̄ - x̄.
The correct answer should be 0 however using the equations
above we get [xmin − xmax, xmax − xmin].

4.2. Affine Arithmetic

To solve the problems of interval arithmetic, affine arith-
metic [6] takes into account correlations between variables.
To do this each signal has noise values that can appear in
other signals. A signal is represented as follows:

x̂ = x0 + x1ε1 + x2ε2 + ... + xnεn, where εi = [−1, 1].

To convert range information to this representation, the fol-
lowing equations are used:

x0 =
xmax + xmin

2
, x1 =

xmax − xmin

2
.

Once the intervals [xmin, xmax] are expressed in the form
of x̂, the expressions can be added, multiplied etc. and
converted back to intervals when required. To convert the
expressions back into intervals, set εi to 1 or -1 in order
to give the maximum and minimum values. For example:
x̂ = −4 + 9ε1 − 3ε2 has range [-16,8]. A problem arises
when multiplying an expression of the form:

Q =

(
n∑

i=1

xiεi

)(
n∑

i=1

yiεi

)
.

The conservative approximation to this is:

Q ≈ uvεn+1, where u =
∑n

i=1 |xi|, v =
∑n

i=1 |yi|
(see [6] for a more detailed overview). If both interval and
affine arithmetic are used, the example circuit given in [5],
Fig. 3 can be improved.

5. PRECISION ANALYSIS

5.1. Coarse-grain Precision Analysis

Precision analysis corresponds to reducing the number of
bits used to store the fractional part of the number while
maintaining a specified accuracy. The first step in preci-
sion analysis is coarse-grain analysis which returns a uni-
form bit-width. To accomplish this quickly, a binary search
is performed over the search space.

5.2. Fine-grain Precision Analysis

As shown in [5], uniform bit-widths produces unnecessar-
ily large designs. To improve results the system first tries to
remove integers that have been given a floating-point type.
Each precision bit-width is set to zero, if the error require-
ment is still met and the error is below a certain threshold,
the precision remains zero.

The next stage is to increase each bit-width by a constant
amount above the coarse-grain analysis. This increases the
accuracy of the analysis because more of the search space
is available, simplifying the analysis in [4] where the au-
thors increase the bit-widths later on in the process. Each
bit-width is then gradually reduced until the error require-
ment is broken. The ordering of reduction is important here:
reducing one bit-width will have a cascading effect on the
rest. For this reason, the cost of a reduction is measured.
The reduction that causes the largest decrease in cost will
be performed first. If there are several with the same cost,
the one which increases the error by the smallest amount is
chosen.

This is an aggressive approach. Another possibility is
performing the reduction that causes the lowest error in-
crease [4]. The problem with this is that the components that
cause a small amount of error will generally have a small
cost associated with them.

5.3. Partitioning

For small programs the method runs quickly giving near-
optimal results in most cases. For large programs it may take
several minutes or even hours to execute. For this reason we
partition the problem using the following algorithm. First,
the fine-grain algorithm is applied to partitions of the entire
data-set. The key difference is that instead of reducing each
bit-width by 1, it reduces each width by a larger number; the
larger the number, the more coarse-grain the optimization
will be. So if the precision is 10 it may reduce the number
by 3 each time, for example: 10, 7, 4 etc. Notice that if
the optimal value is 5 then the algorithm would stop at 7.
This algorithm has several parameters that can be changed
depending on how aggressive (and thus faster) the algorithm
will run. Finally the fine-grain algorithm is applied to the
entire data-set to fine-tune the results.

Fig. 2 shows that when the size of the reduction is de-
creased (more fine-grain) on each partition, the solution gets
slightly worse because each partition is highly optimized, so
the fine-tuning has less effect. The plateaus of the graph are
caused when a partition cannot be optimized anymore.

5.4. Scheduling Floating-Point Units

Using the cost table generated by the algorithm, the latency
is worked out for each operation using its bit-widths. Based

 8500

 9000

 9500

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 13500

 0 20 40 60 80 100 120 140

C
o
s
t

Iteration

RGB to YCbCr color conversion

Reduction size 1

Reduction size 5

Reduction size 10

Reduction size 15

Fig. 2. A graph comparing cost with the algorithm aggres-
sion on a partitioned dataset.

on this, some operations are chosen to be shared on a single
floating-point unit to reduce area.

5.5. Code Control Flow

While if statements are briefly covered in [5], loops are not
covered and will require a more in-depth analysis. The prob-
lem is that most loops use dynamic bounds. Since the loop
can be executed an unknown number of times, the precision
and range of any of the variables inside will not be known
exactly and over-estimates will have to be used. A further
problem is that loops that execute for a long time will slow
down the algorithm. The variables in the loop will have to
have their ranges and precisions estimated. This problem
can only be solved using a combined static and dynamic ap-
proach, which we leave for future work.

6. RESULTS

We demonstrate our approach using the following three case
studies: DCT8, B–Splines and RGB to YCbCr color conver-
sion. The bit-width analyses are run on a Pentium 4 3.2GHz
machine. The designs are synthesized to a Xilinx Virtex–4
XC4VLX100–12 FPGA using ASC 1.5 [8] and Xilinx ISE
8.1. None of the results have optimizations applied to them:
for example converting multiplies to shifts since transfor-
mations are applied by another component of our system.
Of the three case studies we perform, our average speedup
is 200 times and the area is within 2-3% of an exhaustive
search.

7. CONCLUSION AND FUTURE WORK

We have shown that in less than 1% of the time, our system
can generate lower cost designs. A near-optimal approach

that calculates quickly is beneficial because the place-and-
route tools may slightly alter the design, rendering some of
the optimization useless.

Due to the large amount of time other systems take to
run [4, 5], we find them inappropriate for non-trivial de-
signs. Our solution scales much better due to the partition-
ing and small amount of time required. Minibit uses manu-
ally optimized cost and error functions which increases the
speed of Simulated Annealing. We found that without these
optimized functions the polynomial example took approxi-
mately 2 minutes to run. Our system works completely auto-
matically, but can be given user input to improve the results.
Due to improvements in the input pass, code can be written
in standard C/C++.

We currently work on a dynamic approach which, when
combined with this system, will give the user the chance to
trade off accuracy if required, so that larger and more com-
plex designs can be processed.

8. REFERENCES

[1] G. Constantinides and G. Woeginger, “The complexity of mul-
tiple wordlength assignment,” Applied Mathematics Letters,
vol. 15, no. 2, pp. 137–140, 2001.

[2] K. Kum and W. Sung, “Combined word-length optimization
and high-level synthesis of digital signal processing systems,”
IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems, vol. 20, no. 8, pp. 921–930, August
2001.

[3] A. Abdul Gaffar, O. Mencer, W. Luk, P. Y. Cheung, and
N. Shirazi, “Floating-point bitwidth analysis via automatic
differentiation,” in IEEE international conference on field-
programmable technology (FPT), December 2002, pp. 158–
165.

[4] S. Roy and P. Banerjee, “An algorithm for trading off quantiza-
tion error with hardware resources for MATLAB-based FPGA
design,” IEEE Transactions on Computers, vol. 54, no. 7, July
2005.

[5] D. Lee, A. Abdul Gaffar, R. C. C. Cheung, O. Mencer, W. Luk,
and G. A. Constantinides, “Accuracy-guaranteed bit-width op-
timization,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 10, October 2006.

[6] J. Stolfi and L. de Figueiredo, Self-Validated Numerical Meth-
ods and Applications. Rio de Janeiro: Institute for Pure and
Applied Mathematics (IMPA), 1997.

[7] R. Moore, Interval Analysis. NJ: Prentice-Hall: Englewood
Cliffs, 1966.

[8] O. Mencer, D. J. Pearce, L. W. Howes, and W. Luk, “Design
space exploration with a stream compiler,” in IEEE interna-
tional conference on field-programmable technology (FPT),
December 2003, pp. 270–277.

