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Abstract

Automatic bitwidth analysis is a key ingredient for high-
level programming of FPGAs and high-level synthesis of
VLSI circuits. The objective is to find the minimal number of
bits to represent a value in order to minimize the circuit area
and to improve efficiency of the respective arithmetic oper-
ations, while satisfying user-defined numerical constraints.
We present a novel approach to bitwidth – or precision –
analysis for floating-point designs. The approach involves
analysing the dataflow graph representation of a design to
see how sensitive the output of a node is to changes in the
outputs of other nodes: higher sensitivity requires higher
precision and hence more output bits. We automate such
sensitivity analysis by a mathematical method called au-
tomatic differentiation, which involves differentiating vari-
ables in a design with respect to other variables. We illus-
trate our approach by optimising the bitwidth for two ex-
amples, a Discrete Fourier Transform implementation and
a Finite Impulse Response filter implementation.

1. Introduction

FPGAs are starting to provide sufficient area to im-
plement floating-point computations. The large size of
floating-point arithmetic units, still remains the main lim-
itation on floating-point computations on FPGAs. One way
to deal with this difficulty is to minimize the number of bits
in the operands, which in turn minimizes the area and pos-
sibly latency of the arithmetic operation.

Floating-point numbers consist of a fixed point man-
tissa (m) and an integer exponent (e) representing a num-
ber m · 2e. As a consequence, the number of bits for the
exponent represents the range of possible values, while the
number of bits in the mantissa determines the available pre-
cision for a particular variable.

We can split the problem of minimizing the bits in the
operands into two parts: (1) range analysis, and (2) preci-

sion analysis. Range analysis has received much attention
within recent integer bitwidth analysis work [2], [9], [11].
Precision analysis is a separate problem. In precision anal-
ysis, we are interested in the “sensitivity” of the output of a
computation to a slight change to the inputs, or more specif-
ically, the sensitivity of an output to the precision within an
arithmetic unit. So far research into precision analysis has
mainly focused on fixed point implementations [3], [4], [5],
[8], [10].

The most straight-forward method for minimizing the
number of bits is to try out various bitwidths and observe
the output for each configuration space [6]. This technique,
however involves an enormous search space. In this work
we focus on a more scalable method that dynamically com-
putes the derivatives of the computed function based on
a method known as automatic differentiation. Automatic
differentiation is well-known within the optimization com-
munity; it enables the computation of all derivatives of the
functions in a program. Since our initial evaluation reveals
that available automatic differentiation packages are very
powerful but are too slow for our purposes, we implement
our own version of automatic differentiation which is fully
specialised to the task of precision analysis for floating-
point computations.

The remainder of the paper is organized as follows. In
Section 2 we explain the mathematical foundation of sen-
sitivity analysis via differentiation, and the connection of
sensitivity analysis to the minimal bitwidth of the mantissa
of a floating-point number. Section 3 details our implemen-
tation of automatic differentiation within a C++ library with
user defined types and overloaded operators. Section 4 de-
scribes the application examples and Section 5 gives de-
tailed results of our bitwidth analysis, including estimated
area savings.

2. Approach

In this section, we provide a description of our approach
to bitwidth analysis together with a presentation of the
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mathematical reasoning behind it.

2.1. Design Flow

Our bitwidth analysis method consists of three major
phases as shown in Figure 1. The first phase modifies a
software floating-point program in C/C++ by changing the
variable types. The second phase involves compiling the
program and linking it against our automatic differentiation
library. The third phase involves executing the compiled
code to perform the analysis.

The analysis phase consists of two main passes. The
forward-passconstructs the data flow graph for the design
and performs the differentiation of the variables. The re-
sulting differentials are stored in the nodes of the data flow
graph. In thebackward-passwe use the differentials calcu-
lated in the forward pass together with the user supplied cost
function to calculate the bitwidths. The user supplied cost
function contains the parameters, such as the acceptable er-
ror in the output measured against a reference output and
the maximum area available for the design. The backward
pass is applied iteratively on the design until the number of
user supplied cost function parameters is maximised.

Floating-point Design in C /
C++

C++ Compiler / Linker

Automatic differentiation
library

Forward Pass

Backward Passes
Cost
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Output generation

Annotated
dataflow graph

Handel-C design
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Figure 1: The design flow.

The backward passes generate an annotated data flow
graph which contains the calculated bitwidths. This anno-
tated data flow graph is then used by the output phase to

either generate a hardware design description or to report
the results back to the user.

2.2 Calculation of sensitivity

Consider a functionf : X → Y , whereX andY are
the input and output to functionf . The sensitivity ofY to
X can be approximated bydY/dX or the gradient ofY
with respect toX. Automatic differentiation is a method
for calculating this gradient function if there is a functional
or an algorithmic relationship betweenX andY .

The sensitivity ofY to X can then be used to relate the
error that occurs inX when its bitwidth is altered, to the
error that occurs inY as a result. Differentiation can ap-
proximate this change inY without evaluating the function
f for the new value ofX.

2.3 Calculation of bitwidth

Consider a functionf : X → Y again, whereX andY
are the input nodes and output nodes of the functionf . A
change inY , denoted by∆Y , is related to a change inX
denoted by∆X as follows:

∆Y = ∆X × df(X)
dX

(1)

If the output error is expressed as aRelative Output Error
value, denoted byεy, then:

εy =
∆Y

Y
=

(
∆X

f(X)
× df(X)

dX

)
(2)

Consider a floating-point value represented byX with
m1 mantissa bits ande1 exponent bits. It is converted to
another floating-point number̂X by reducing the bit width
of the mantissa tom2 bits and the exponent toe2 bits.

The mantissa bit truncation error∆X can then be ex-
pressed as follows:

∆X = |X̂ −X| (3)

0 ≤ ∆X ≤ (|2−m1 − 2−m2 | × 2Emax) (4)

The exponentEmax is the maximum value of the ex-
ponent ofX. Here we assume that the mantissas are nor-
malised.

From equation (1) we can determine how much error is
tolerable at a given input node when we can tolerate a given
error at the output node. Using equation (4) we can convert
the error at the inputX to a bitwidth specification for that
input:

m2 = log2

 1

2−m1 − |∆X/2|
2 exp(Emax)

 (5)
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Consider a data flow graphG with N internal nodes. The
sensitivity relationship between the internal nodesnodei

and an output of the data flow graph,output and the change
in the output, denoted by∆outputi can be derived from
equation (1):

∆outputi =
(

∆nodei ×
doutput

dnodei

)
(6)

When dealing with a data flow graph with multiple inter-
nal nodes, we need to split the total error acceptable at the
output, denoted by∆output among the nodes, such that:

∆output =
N∑

i=1

∆outputi (7)

∆output =
N∑

i=1

(
df(nodei)
dnodei

× nodei

f(nodei)

)
(8)

Wheref is the transfer function fromnodei to output.
The partitioning of the total error acceptable at the out-

put (∆output) into errors resulting from internal nodes
(∆outputi) can be achieved by the following two methods.

In method A, we consider that all the∆outputi values
are equal. This is shown in equation (9).

∆outputi =
∆output

N
(9)

This is the simplest way of calculating the values of
∆outputi, where all the nodes are treated equally.

In method B, the∆outputi values are calculated ac-
cording to weightsWi allocated to each node, such that∑N

i=1 Wi = 1.

∆outputi = ∆output×Wi (10)

We choose the weights according to the relative area es-
timates for the operations at each node. This method gives
the designer the ability to specifically target area or speed
optimisations provided by different node types.

3. Class library for Automatic Differentiation

Automatic Differentiation (AD) deals with differentiat-
ing a program at run time, given a specific set of input vec-
tors. Initially we consider conventional AD packages FAD-
BAD [1] and ADOLC [7]. Both these AD packages are
based on an operator overloaded C++ library front end and
are capable of higher order differentiation. When utilising
these packages for our analysis, we find that the analysis
execution time is extremely long. The reason is that these
AD packages support many differentiation related features

which contribute an execution overhead, since these extra
features are not required by our analysis.

Another motivation for developing our own automatic
differentiation packages is to incorporate the bit width anal-
ysis phase. This would improve the execution time of the
analysis, by performing both the automatic differentiation
and bitwidth analysis in the same step. Thus we implement
minimal AD functionality, incorporating the bit width cal-
culation phase as required for precision analysis, as a C++
operator overloaded class library. Since this is based on an
operator overloaded library, minimal changes are required
to convert ordinary C/C++ code for analysis.

Our C++ class library provides custom data types and
operators. As a consequence, at run time each invocation of
an operator adds a node to an internal data structure which
keeps track not only of the computation, but also keeps track
of the differentiated function. The result is that we can take
a general C++ program and simply by changing the types of
the variables to our user defined types, we implicitly insert
an AD code that computes the value of the differentiated
function.

For example, the C++ code below shows the differenti-
ation of the functionc = (a + b) × (a − b), at a = 10.0
andb = 5.0. The main changes required to the original C
code is the changing of the type of variablesa, b andc to
typeautodiff . In addition we mark out the independent
variables with respect to which the differentiation would be
done by using overloaded operator<<=.

autodiff a,b,c;
double gradient_a, gradient_b;
double value;

a <<= 10.0; // Set a as independent
Variable

b <<= 5.0; // Set b as independent
Variable

c = ( a + b ) * ( a - b );

value = c; // Value of c
gradient_a = ( c >>= a ) // Value of dc/da
gradient_b = ( c >>= b ) // Value of dc/db

The calculated value ofc is available whenc is as-
signed to standard C data types such asfloat or double ,
simplifying integration of non-analysed C code. The gra-
dients calculated can be obtained using the overloaded
operator>>=.

Compiling and executing the program above generates
not only the gradients which we illustrate in this example,
but also the sensitivity information. This information is
stored inside each variable for use by the precision analy-
sis phase, which is not illustrated in the above code.

The main advantage of our method is that the designer
can analyse sections of a large program without having to
rewrite the entire program. Thus we are able to build a

3



program analysis tool by using the full power of the C++
language and compiler. We use the GNU C++ compiler to
compile the code for our analysis.

4. Examples

In order to illustrate the analysis, we consider two exam-
ples.

4.1 Discrete Fourier Transform (DFT)

Out first example is a Discrete Fourier Transform (DFT)
implementation. The mathematical formula involved in the
calculation is given as follows.

X(k) =
N−1∑
n=0

x(n).Wn.k
N (11)

X(k) =
N−1∑
n=0

x(n).WN [(n.k) mod N ] (12)

WN = e−j2π/N (13)

A direct implementation of equations (9)-(11) results in
the following C program:

/* Generation of coefficients W */
for ( n = 0 ; n < N ; i++ ) {

W_real[i] = cos( arg * i );
W_imag[i] = -sin( arg * i );

}
/* The main computation kernel */
for( k = 0 ; k < N ; k++ ){ // Outer loop

out_real = in_real;
out_imag = in_imag;
for ( n = 0 ; n < N ; n++ ){ // Inner loop

p = ( n * k ) % N;
out_real = out_real +
in_real * W_real[p] - in_imag * W_imag[p];
out_imag = out_imag +
in_real * W_imag[p] + in_imag * W_real[p];

}
}

First we analyse the data flow graph of the inner most
loop of the above code segment. The resulting data flow
graph is shown in Figure 2.

Consider the evaluation of the sensitivity (or gradient)
given bydoutput/dinput. Equation (14) and equation (15)
from the inner loop of the DFT code relate theoutput to the
input:

out real = out real−1 + in real ×W real[p]
−in imag ×W imag[p] (14)

out imag = out imag−1 + in real ×W imag[p]
+in imag ×W real[p] (15)

in_real

Mult1 Mult3

Sub1

W_real

Mult4

in_imag

Mult2

W_imag

Add2

out_real

Add1

Add3

out_imag

Figure 2:Data flow graph of the inner most loop of the DFT code.

whereout real−1 andout imag−1 are the previous values
of out real andout imag respectively.

Next, we differentiate the two outputsout real and
out imag with respect to the two inputsin real and
in imag. This gives rise to the four equations (16) - (19)
expressing the gradients:

d out real

d in real
=

d out real−1

d in real
+ W real[p] (16)

d out real

d in imag
=

d out real−1

d in imag
−W imag[p] (17)

d out imag

d in real
=

d out imag−1

d in real
+ W imag[p] (18)

d out imag

d in imag
=

d out imag−1

d in imag
+ W real[p] (19)

This evaluation of the differentials in equation (16) to
equation (19) is performed with the use of automatic differ-
entiation.

We deduce that there is a loop carried dependency, from
equation (16) to equation (19) by observing the presence of
thed output−1/d input terms. Since all the loops are un-
rolled by the automatic differentiation algorithm, this loop
carried dependency is taken into account automatically.

We evaluate the gradients of the output with respect to
all the other intermediate nodes from Figure 2 in a similar
fashion.
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Figure 3:Data flow graph of the FIR filter.

We determine the mantissa bitwidth for the DFT imple-
mentation as follows. In the case of nodes which feed into a
single output, equation (6) can be used directly by substitut-
ing the appropriate values. In the case of nodesin real and
in imag which feed into two output nodes, the following
equations (20) and (21), derived from equation (6), are used
instead.

∆in real =
(

∆out realin real ×
d out real

d in real

+∆out imagin real ×
d out imag

d in real

)
(20)

∆in imag =
(

∆out realin imag ×
d out real

d in imag

+∆out imagin imag ×
d out imag

d in imag

)
(21)

The error tolerance values calculated in equation (5) and
equation (6) lead to the mantissa bitwidths at each of the
nodes in the data flow graph.

4.2 Finite Impulse Response (FIR) Filter

As the second example we show the bitwidth analysis
for an implementation of an FIR filter. The filter is imple-
mented according to the data flow graph shown in Figure 3.

DFT Error Percentage
Node Name 0% 1% 5% 10% 25% 50%

in real 23 13 11 10 9 8
mult1 23 12 10 9 8 7
mult2 23 12 10 9 8 7
sub1 23 12 10 9 8 7
add2 23 15 12 11 10 9

in imag 23 14 12 11 9 8
mult3 23 11 9 8 6 5
mult4 23 11 9 8 6 5
add1 23 11 9 8 6 5
add3 23 13 11 10 8 7

Table 1:Minimum mantissa bitwidth versus specified output er-
ror for the DFT implementation. The nodes refer to locations in
the data flow graph in figure 2.∆outputi is calculated using
method A.

The main equation which describes the relationship be-
tween the nodesX0 to X3 and the output nodeOUT is:

OUT = X0×A0+X1×A1+X2×A2+X3×A3 (22)

Next we differentiate equation (22) with respect to
the variablesX0 to X3. This provides us with the
gradientsdOUT/dX0, dOUT/dX1, dOUT/dX2 and
dOUT/dX3. In addition to these gradients we also eval-
uate the gradients for all the intermediary nodes in the data
flow graph in Figure 3.

The mantissa bitwidth for the FIR filter is determined as
follows. Using the gradients we calculate the error tolerance
at each of the nodesX0 to X3 with the use of equation (6).

∆X0 = ∆OUTX0 ×
d OUT

d X0
(23)

∆X1 = ∆OUTX1 ×
d OUT

d X1
(24)

∆X2 = ∆OUTX2 ×
d OUT

d X2
(25)

∆X3 = ∆OUTX3 ×
d OUT

d X3
(26)

The values of∆X0 to ∆X1 can then be used with equa-
tion (5) to calculate the mantissa bitwidths at each of these
nodes. This process is repeated for the rest of the nodes in
the data flow graph in Figure 3.

5 Custom Floating-Point Hardware Library

In order to implement the bit optimised floating-point de-
signs produced by our method we develop a customisable
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Implementation
Error Percentage

0% 1% 5% 10% 25%

FIR 2567 909 580 517 444
DFT 2903 1472 1287 1079 933

Table 3:The area usage in Xilinx Virtex2 slices for different amounts of error that can be tolerated for the FIR and DFT implementations.
The results were obtained for a Xilinx XC2V2000 device.

Implementation
Error Percentage

0% 1% 5% 10% 25%

FIR 28 30 40 42 44
DFT 59 77 82 84 86

Table 4:The maximum operating speed in MHz for different tolerated amount of error at the outputs for the FIR and DFT implementations.
The results were obtained for a Xilinx XC2V2000 device.

FIR Error Percentage
Node Name 0% 1% 5% 10% 25% 50%

X0 23 10 7 6 5 4
X1 23 9 7 6 4 3
X2 23 9 6 5 4 3
X3 23 8 6 5 3 2

MULT1 23 8 5 4 3 2
MULT2 23 8 5 4 3 2
MULT3 23 8 5 4 3 2
MULT4 23 8 5 4 3 2
ADD1 23 11 9 8 6 5
ADD2 23 11 9 8 6 5
ADD3 23 11 9 8 6 5

Table 2:Minimum mantissa bitwidth versus specified output er-
ror for the FIR filter implementation. The nodes refer to locations
in the data flow graph in Figure 3.∆outputi is calculated using
method A.

hardware floating-point library. This library provides the
user the ability to customise the bitwidths of the mantissas
and exponents.

The implementation results illustrated in this paper make
use of this customisable floating-point hardware library.
Currently the library is still under development and does not
have any FPGA placement information in it. Our hope is to
develop it further by incorporating placement information
which is also parameterisable with respect to the mantissa
and exponent bit widths. We develop our library and the
implementations in VHDL and use Synplicity to compile
these into netlists. These are then placed and routed using
Xilinx software.

6. Results

We use IEEE single precision floating-point as the start-
ing representation from which we perform bitwidth reduc-
tion. Therefore the mantissa of the internal floating-point
representations is initially set to 23 bits.

The minimum bitwidth results shown in Table 1 and Ta-
ble 2 are obtained respectively using method A for the DFT
and FFT examples. By varying the amount of error that we
tolerate at the outputs (output error specification), we ob-
serve the sensitivity of the outputs to changes in internal
bitwidths.

Table 3 presents the FPGA area for the DFT imple-
mentation and the FFT implementation on a Xilinx Virtex
XC2V2000 FPGA. It is remarkable that tolerating 1% er-
ror at the outputs of the FIR filter reduces the area of the
FIR implementation by 65%. The same 1% error for the
DFT reduces the FPGA area of the DFT implementation by
45%.

Table 4 shows the variation in speed when tolerating dif-
ferent amounts of error at the outputs of the DFT and FFT.
Again, it is remarkable that tolerating 5% error at the out-
puts results in a 30% speed improvement for the FIR im-
plementation and a 40% speed improvement for the DFT
implementation. Tolerating more than 5% error yields di-
minishing returns in FPGA area and speed.

More detail on FPGA area and speed results are provided
in Figure 4. In our two examples, a tolerable error of less
than 5% provides almost all the area and speed improve-
ments possible.
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Figure 4: This figure shows the variation in area and speed against the output error percentage for the DFT and the FIR
implementations. The results are obtained for a Xilinx XC2V2000 device.
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7. Conclusions

This paper shows that it is possible to use automatic dif-
ferentiation for bitwidth analysis of the mantissa part of
floating-point numbers. As to our knowledge this paper is
the first to suggest this approach.

The paper shows how to achieve a reduction in the width
of the floating point mantissa, minimise the FPGA area
and maximise the speed of an FPGA implementation, while
keeping an eye on the amount of error at the outputs. On the
implementation side, C++ turns out to provide an excellent
environment for quick prototyping of the ideas presented in
this paper. Current and future work includes extending our
analysis to use automatic differentiation for piece-wise dif-
ferentiable functions.
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